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We study the asymptotic behavior as time t ~ + ~  of certain nonstationary 
Markov chains, and prove the convergence of the annealing algorithm in Monte 
Carlo simulations. We find that in the limit t ~ +o% a nonstationary Markov 
chain may exhibit "phase transitions." Nonstationary Markov chains in general, 
and the annealing algorithm in particular, lead to biased estimators for the 
expectation values of the process. We compute the leading terms in the bias and 
the variance of the sample-means estimator. We find that the annealing 
algorithm converges if the temperature T(t) goes to zero no faster than 
C/log(t/to) as t-~ +oo, with a computable constant C and t o the initial time. 
The bias and the variance of the sample-means estimator in the annealing 
algorithm go to zero like O(t -~ "~) for some 0 ~< g < 1, with e = 0 only in very 
special circumstances. Our results concerning the convergence of the annealing 
algorithm, and the rate of convergence to zero of the bias and the variance of 
the sample-means estimator, provide a rigorous procedure for choosing the 
optimal "annealing schedule." This optimal choice reflects the competition 
between two physical effects: (a) The "adiabatic" effect, whereby if the tem- 
perature is lowered too abruptly the system may end up not in a ground state 
but in a nearby metastable state, and (b) the "super-cooling" effect, whereby if 
the temperature is lowered too slow@ the system will indeed approach the 
ground state(s) but may do so extremely slowly. 

KEY WORDS: Nonstationary Markov chains; annealing algorithm; anneal- 
ing schedule; unbiased estimators. 

1. INTRODUCTION 

I n  th i s  p a p e r  we s t u d y  t he  a s y m p t o t i c  b e h a v i o r  as  t i m e  t ~ + o o  o f  c e r t a i n  

n o n s t a t i o n a r y  M a r k o v  c h a i n s ,  a n d  p r o v e  t h e  c o n v e r g e n c e  of  t he  a n n e a l i n g  
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algorithm in Monte Carlo simulations. We find that in the limit t ~ + o% a 
nonstationary Markov chain may exhibit "phase transitions," and the law 
of large numbers may fail, in the sense that the sample means do not form 
a consistent sequence of estimators for the t ~  +o0 stationary state. 
However, under appropriate conditions on the decay rate as t ~ +00 of 
the one-step transition probabilities for nonstationary Markov chains in 
general, and the annealing algorithm in particular, we show that the 
estimators are in fact consistent, albeit biased. We compute explicitly the 
leading terms in the bias and the variance of such an estimator. We find 
that the annealing algorithm converges if the temperature T(t) goes to zero 
as t ~  +o0 no faster than C/log(t/to). We given an (in general optimal) 
expression for the constant C in terms of the energies. Here to is the initial 
time (in the rest of the paper we set to = 1). The bias and the variance of 
the sample-means estimator in the annealing algorithm go to zero like 
O(t -1 + ~) for some 0 ~< e < 1, with e -- 0 only in very spcial circumstances. 

The Metropolis algorithm was originally introduced (17) for studying 
numerically the equilibrium properties of statistical-mechanical systems at 
a given temperature. Simulations based on Metropolis-type Monte Carlo 
techniques have been used extensively in the study (18) of time evolution of 
spin and other lattice systems. The annealing algorithm is a modification of 
the Metropolis algorithm, in which the temperature is varied with time 
according to an "annealing schedule" T(t). Simulated annealing has been 
important in Monte Carlo studies of "random systems" (in particular "spin 
glasses") in statistical mechanics, ~15'2~ and it has been used as an 
empirical test for a first-order phase transition in lattice gauge theories. (4̀ s) 
Recently, it has been proposed (16) for use as an optimization technique, and 
it has been applied successfully on a number of combinatorial optimization 
problems including the traveling salesman problem and certain other 
problems (known as NP-complete problems) arising in computer design. 
In Ref. 8, the annealing algorithm was introduced as a tool in computer 
vision, and the first rigorous result, concerning the convergence of the 
algorithm, was established. Our present mathematical work grew out of 
Metropolis-type Monte Carlo numerical experiments we are currently per- 
forming, concerning the restoration of degraded images, and edge and 
object detection in digital images. 

A basic question in statistical-mechanical systems concerns their low- 
temperature behavior, which is controlled by the ground states and other 
states near them in energy. Experimentally, the ground state of a system 
can be reached by first "melting" the substance and then cooling it slowly, 
being careful to pass especially slowly through the "freezing" temperature 
(if any). If the temperature is lowered too abruptly, then the system may 
end up not in a ground state, but in a nearby metastable state, i.e., in a 
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local but not global minimum of the energy (we refer to this phenomenon 
as the "adiabatic" effect). If, on the other hand, the temperature is lowered 
too slowly, then the system will indeed approach the ground state(s), but 
may do so extremely slowly (we refer to this phenomenon as the "super- 
cooling" effect). The optimal choice of the annealing schedule in Monte 
Carlo simulations is determined by the competition between these two 
effects. [For random systems (spin glasses), simulations are complicated 
further by the fact that these systems seem to have not one but many 
nearby almost-degenerate random ground states.] 

In this paper, we treat the annealing algorithm as a special case of the 
theory of nonstationary Markov chains, and provide an (in general 
optimal) lower bound on the rate at which the temperature must be 
lowered in order to reach the ground state. Our results concerning the con- 
vergence of the annealing algorithm, and the rate of convergence to zero of 
the bias and the variance of the sample-means estimator, provide a 
rigorous procedure for choosing the best annealing schedule. 

We now describe briefly our main results: Let {X (t)} be a discrete-time 
(t = 0, 1, 2,...), nonstationary Markov chain wi th  f in i te  state space 

~r { S l , S  2 ..... Sn} (1 .1)  

one-step transition probabilities 

p ~ i ( t ) = p ~ t - l . n = P ( X " ) = s j [ X ( ' - a ) - s i ) ,  i , j = l , . . . , n  (1.2) 

and initial probability distribution 

~I ~ = P ( X  (~ = si), i = 1 ..... n (1.3a) 

~I~ ~> O, ~, cr176 = 1 (1.3b) 
i=1 

We assume that the limit 

p~! l ' t ) ~ p o ,  as t ~  + ~ ,  i , j = l , . . . , n  (1.4) 

exists, and that the limiting matrix P = P ( o o ) = ( P i j )  has one or more 
(irreducible) ergodic (recurrent) sets, and perhaps some transient states. 
Aggregating the states properly, P takes the form 
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P =  

m 

t'l Y2 " ' "  r m H-- E t7 
y = l  

S{1): 0 �9 0 �9 0 0 

0 " S <2) �9 0 0 0 

�9 . . ~  . . . .  : . . .  : . . . .  : . . . .  

O :  0 : .  : 0  : 0 
. . . :  . . . .  : . . ' :  . . . . . . . . .  

0 �9 0 �9 0 :S (") : 0 

r l  

r2 

( 1 . 5 )  

rm 

where the matrices  

V(k'~ a s  t ~  + o 0 ,  k , l=l ,  2,...,m 

By the w e l l - k n o w n  P e r o n - F r o b e n i u s  theorem,  at each epoch  t, the matrix 
P ( t )  has an invariant  ("equilibrium") probabil i ty vector ~z(t) = 
(x l ( t )  ..... ~zn(t)), i.e., there exists a vector rt(t) such that 

~:(t) = L ~i(t) p~t-,,t) (1.7a) 
i=i 

! y = l  

where S (7), 7 = 1,..., m are the r>. x r~ transition matrices for the m ergodic 
sets, R concerns the process as long as it stays in the n-ZTm=~ r~ transient 
states, and L (~), 7 = 1,..., m concern transitions from the transient states into 
the ergodic sets S (~), 7 = 1 ..... m, respectively. The regions 0 consist entirely 
of  zeros.  We  will be concerned  mainly  with the case when  the ergodic  states 
are aperiodic.  Corresponding  to the form (1.5) on  P, the matrix P ( t ) =  
p ( , - 1 . o =  (p,~,-Lo) has the form 

P ( t )  = p i t -  1:1 = 

s ( l ) _ } _  V ( l , 1 )  V ( 1 , 2 )  , V ( 1 , 3 )  . . . .  v ( l , m )  V ( 1 , m + l )  
--(t) --(t) --(t) --(t) --(0 

V ( 2 , 2 )  . l / ' (  2,3 ) . . . .  V ( 2 , m )  l / ' ( 2 ,m + 1) V(2'1) S(2) + - ( t )  - ( 0  - ( t )  - ( t )  
- - ( t )  

: . . -  . . . . . . . . .  : . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  �9 .. �9 �9 �9 

. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  " * v ( m , m )  V ( m , m  + 1 ) l / ( m , l )  [ / ( m , 2 )  " v ( m ' 3 )  " " ' s ( m )  "3v - ( t )  - ( t )  
--(t) --(0 --(t) 

. . . . . . . . . . . . . . . . . . . . . . .  o . . . .  - . . . . . . . . . . .  �9 . . . . . . . . . . . .  

i 
�9 . 

V ( m  + I ' m )  R - ~ -  v ( m +  l ' m +  1) V(m+ 1,1) L(2) + (m+ 1,2) L(m)+ -( t )  ~_ L t l )  + - ( o  V(O - ( t )  

( 1 . 6 )  
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ui(t) = 1 
i = 1  

~j(t)>~0, j =  1,..., n 

(1.7b) 

(1.7c) 

The higher transitions probabilities t~!~o,t) are defined by r y  

p~(~176  for t o < t  

and satisfy the Chapman-Kolmogorov equation 

Plj '~  ~ r~,"(t~ , for to < t' < t 
/ = 1  

and also 

(1.8) 

~ n ( !  ~  = 1 

j = l  

(1.9) 

We will also use the absolute (or unconditional) probabilities 

t r (1 

i = 1  

which satisfy 

(1.10a) 

~}t) = ~ ~i(t~ p,j(to,t), for O~<to~<t- 1 (1.lOb) 
i ~ l  

@t)= 1 (1.10c) 
j = l  

Assuming that the limit (1.4) exists and that ~z(t) is unique, we are 
concerned mainly with four questions: 

(i) Does the limit o fp~  ~ exist as t ~  + m ,  and if yes, is the limit 
independent of the initial state i? 

(ii) Does lim t~ +~ 7cj(t) exist? 

(iii) If both of the above limits exist, are they the same, i.e., does 

lira n!9,t)= lim ~j(t) (1.11) 

hold? 
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(iv) Do the bias and the variance of the sample-means estimator 
(ergodic average) 

1 ~ f(X(s~ ) 
ts=O 

converge to zero as t--, + ~ ,  and if yes, what is the rate of convergence? 
H e r e f i s  a function on the Markov chain {X(~ 

If the limiting matrix P has only one ergodic component (and possibly 
transient states), then p(O.,) and re(t) have limits as t-+ +0% and (1.11) 
holds always. But if P has two or more ergodic components then 
everything can happen. The examples of the Appendix show that any of the 
following possibilities may occur: (a) neither re(t) nor p(o.,) has a limit; (b) 
re(t) has no limit, but p~O,,) has a limit, and furthermore the limit of ofp,~ ~ 
may or may not depend on the initial state i; (c) both rt(t) and p(0,,I have 
limits, but the limit of n!9 ,~/ depends on the initial state i, and therefore r t j  

(1.11) does not hold. We do not know whether the following possibility 
occurs: (d) re(t) has a limit but not p(o,t~. We believe that case (d) does not 
occur. In the special case of the annealing algorithm re(t) and p(O,,) always 
have a limit, but (1.11) may fail because the limit of p})9,') depends on i (this 
occurs when the temperature goes to zero sufficiently fast). All the limits 
above are ordinary limits, because we assume that the states are aperiodic 
with respect to the matrix P. Some of our results hold for periodic states 
provided that the limits are taken in the sense of some summability method 
such as Euler or Cesaro means. 

If P has more than one ergodic component, then the limit of re(t) may 
fail to exist no matter how fast the decay rate in (1.4) is, while if the decay 
rate in (1.4) is fast enough r~!9.') always has a limit which may, however, r t J  

depend on the initial state i. If both re(t) and p(0,,) have limits, then a 
necessary condition for (1.11) to hold is 

+ c o  + o o  

-1,,)) = (1.12) y" T r ( I - P ( ' - I " ) ) =  ~" (1 -p} j  +oe 
t - - I  t = l j = l  

where I is the identity matrix. Sufficient conditions for (1.11) to hold are 
given in Theorems 1.1 and 1.2 below and in Section 2. If (1.11) holds, then 
the bias and the variance of the sample-means estimator go to zero as 
t--+ +0% but they may do so slowly. Theorem 1.3 provides conditions 
under which the variance converges to zero like O(t -l+~) for some 
0 < e <  1. These conditions yield a procedure for choosing the optimal 
annealing schedule for the annealing algorithm. 

The intuitive reason for the nonexistence of lira, ~ +oo re(t) (as well as 
of lim,~ +o~ p{O,,)) is the occurrence of "phase transitions" when P has 
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more than one ergotic component: Let P have the form (1.5) with m>~2, 
and let 

]~(7)---- (#~Y),'", r~r,~'(~)/,, 7 = 1, 2,.. . ,  rn 

be the unique equilibrium probability distributions (Ref. 7, p. 394) of the 
ergodic matrices S (~), 7 = 1 ..... m, i.e., the unique probability vectors that 
satisfy 

r 7 

/zJ~) = ~ .,n!w)S!z)u, g = 1,..., m 
i = 1  

r 7 

j = l  

1.13a) 

Let 

t z ( e ) =  (0, .  ........ 0 , /~I  ~) ..... , ee )  0,.  ........ 0 ) ,  t-~ry 

r l  + "-- +r'e I fl - -  ~ r l 

I = I  

7 =  1,..., m 1.13b) 

Then any equilibrium distribution # of P is a convex combination 
/&),...,/~(m), i.e., 

1./ = ~ ( 1 ) # ( 1 )  _}_ . . .  _{_ ~ ( m ) # ( m )  

~ ~(~1= 1, ~(e)~>0, 7 = 1 ..... m 
7 = 1  

of 

(1.14) 

What then may happen is that different subsequences of re(t) [-or p}.O,O] 
may converge to different convex combinations of the/z(~)s. (In the anneal- 
ing algorithm this cannot occur for 7r(t), but pl 2,o may converge to a con- 
vex combination that depends on i). 

In order to state our first main result, we will need the probability that 
a transient state falls eventually into an ergodic component: Here and 
through this paper we shall denote the state in the 7th, 7 = 1 ..... m, ergodic 
component by o e(~), and the transient states by /~. Let {J((')} be the 
stationary Markov chain associated with the limiting transition probability 
matrix P in (1.5). Let 

zjr=P{2( ')eS (~) for some t =  1, 2,...12(~ 
j = r l + " "  + r m + l , . . . , n ,  7 = l , . . . , m  (1.15) 
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Clearly 

zj~>~O, 7 = l , . . . , m ,  j 6 R ( j = r l +  "'" + r m + l , . . . , n )  (1.16a) 

~ z # = l ,  for every j = r l + . . -  + r m + l , . . . , n  (1.16b) 
~ , = 1  

The probabilities zj~ can be computed explicitly by considering the 
limk~ +~ pk. See formula (3.17) for the case when P has two ergodic com- 
ponents. There is a similar formula for the general case. 

Here is our first result: 

T h e o r e m  1.1 Let D! t 1,t) be the one-step transition probabilities of 
�9 r l J  

a discrete-time, nonstationary, finite Markov chain which converges to po 
as t--~ +o(3. 

(1) If P =  (Po)  has a single ergodic aperiodic component S(1) and 
possibly transient states /~, then re(t) and p(o,o have limits as t ~  +oo. 
Furthermore, if #- -  (#1, #2,---, #r~, 0,..., O) is the unique equilibrium 
probability distribution of P, then 

lim tj!9,o = (1.17a) ~_,j #j, j = 1,..., n, and all i = 1,..., n 
t ~  +0(3  

and 

lim re( t )=# (1.17b) 
t ~  +0(3  

(2) Suppose that P has exactly two ergodic aperiodic components 
S (1) and S ~2), and possibly transient states/~, i.e., P is of the form (1.5) with 
m = 2 .  Let /~(~), #(2) be as in (1.13b), and zj~, zj2, j = r l + r 2 + l , . . . , n  as in 
(1.15). Let 

pbt -  1,,) = PO + Vii(t), i, j = 1 ..... n (1.18) 

and 

r 2  

~(t)= E Ul2>(Vrl+i,l(t)+ ' + Vrl+i, rl(O+ Vr~+i, rl+r~+XIOZrx+r2+l,1 
i - - 1  

+ "'" + Vr~+e,,(t)z,,1) (1.19a) 

r l  

i = l  

+ "'" + V~,n(t)zn,2) (1.19b) 
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Then: 

(i) If 

D ( t )  + 4 ' (0]  < +oo 
t = 1  

(1.20) 

then for each 1 ~< i # k ~< n, 

lim sup I p~ ~ - n ( 0 ' t ) [  r,~ i # 0 ,  j = l  ..... r l + r 2  (1.21) 
t ~  +oO 

(ii) If 

[q~(t)+ O(t)] = + ~  (1.22) 
t = l  

then for each 1 ~< i, k ~< n, 

lim sup Ipb~ p~~ = 0, j=l,...,n (1.23) 
t ~  + o r  i , k  

Furthermore, if in addition to (1.22), the invariant probability vector ~(t) 
n!9,o exists, and we have has a limit as t ~ + ~ ,  then l im,~ +~ ~,j 

lim ~t~!9,')= lim ~j(t), j =  1 ..... n (1.24) 

independently of the initial state i. 
Note that ~b(t) and 0(t) involve only the entries of the matrices 

V(zA)(t), V(2'3)(t), and V(~'2)(t), VI~'3)(t), respectively [in the representation 
(1.6) with m = 2]. Hence ~b(t), ~p(t) are strictly positive (and go to zero as 
t ~  +or). Theorem 1.1, together with some other results, are proven in 
Section 3. Part (1) is intuitively obvious because of the nonoccurrence of 
phase transitions [i.e., because of the uniqueness of the equilibium vector # 
of P (Ref. 13, Theorem 6.2.1)]. The proof of this part is simple. In contrast, 
the proof of part (2) is more delicate. We do not known whether such a 
sharp theorem holds when P has more than two ergodic aperiodic com- 
ponents (see related remarks in Section 3). The example of the Appendix 
shows that ~(t) may fail to have a limit under either condition (1.20) or 
condition (1.22). This example also shows that (1.22) alone does not 

n!9.') For the annealing necessarily imply the existence of lim,~ +~ r,j �9 
algorithm, condition (1.22) provides a sharp value of the constant C we 
mentioned in the beginning of this Introduction. 

The next theorem is weaker than Theorem 1.1, but it holds even if the 
limit (1.4) does not exist. 

822/39/1-2-6 
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T h e o r e m  1.2. Let/){!-1,1,/) be the one-step transition probabilities r t j  

of a discrete-time, nonstationary, finite Markov chain with an invariant 
probability vector re(t) satisfying (1.7). 

(1) Suppose that there exists an integer N such that for a fixed 
integer t o = 0, 1, 2 ..... we have 

min ~ min{p,~ ,~176 p~+(~ 1)N't~ = C~(to) (1.25a) 
i , k  j - -  1 

with 

then 

- b o o  

Cv(to) = +oo (1.25b) 
v = l  

lira max n(f0,')-,,('0,') I = 0  (1.26) r ty F k j  
t ~ + oc~ i , k  

(2) 
Also assume that for some T>~ 0 

+ o o  

Z 1)1 < +oo 
t = T j  

Then lim,~ +oo re(t), and limt~ +~o p(0,,) exist, and if 

lim 7tj(t) = ~j, j = 1,..., n 
t ~ -boo  

Suppose now that (1,25) holds for every integer t0=0,  1, 2,.... 

(1.27) 

(1.28) 

then 

lim n!9'o = 7zj, j = l  ..... n (1.29) r l J  
t ~ -boo  

independently of the initial state i. 
The proofs of Theorems 1.2 and 1.2 are entirely different. Theorem 1.2 

(with a minor change, see Section 2) is apparently known in the literature 
(Ref. 11, Theorems V.3.2 and V.4.3). 2 Accordingly, in Section 2, we only 

2 We thank one of the referees for bringing to our attention Refs. 6, 9, and 11, and further 
references on nonstat ionary Markov chains contained in Refs. 9 and 11. The quanti ty (1.25a) 
was introduced by Dobrushin  (6) and is known as Dobrushin 's  ergodic coefficient. Our  
independent introduction was motivated by the proof of Theorem 4.1.3 of Ref. 13 for 
stationary Markov chains. This led us to the computat ion of the best constant  in Lemma 2.1 
which provides the basic estimate in the proof of Theorem 1.2. This lemma is equivalent to 
Lemma V.2.4 of Ref. 11. Reference 9 contains an alternative proof of (1.26). 

Par t  (1) of Theorem 1.1 is also contained in Ref. 11, Theorem V.4.5, but  our proof in 
Section 3 is new. Also, the proof of the entire Theorem 1.1 is very different from the circle of 
ideas involved in the proof of Theorem 1.2. 
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outline the proofs of Theorem 1.2 and some variants of it, and present 
mainly some technical estimates which are needed in the rest of the paper. 
Condition (1.22) is, in general, sharper than condition (1.25), and much 
easier to verify in practice. The two conditions are equivalent for the Exam- 
ple of the Appendix. 

Condition (1.27) is clearly satisfied if the limit (1.28) exists and is 
achieved monotonically (perhaps for some js  from above and for other js 
from below). This is the case in the annealing algorithm (see Theorem 1.4 
below and Section 5). Condition (1.27) is not needed in Theorem 1.1 or the 
Example of the Appendix. However, we suspect that Theorem 1.2 does not 
hold in general without condition (1.27) or some other alternative con- 
dition. Theorem 2.3 is a variant of Theorem 1.2, where condition (1.27) is 
replaced by a condition concerning the divergence rate of (1.25b) [see con- 
dition (2.11)]. Condition (1.27) alone [i.e., without condition (1.25)] 
implies (see Proposition 2.1) that the limiting vector rc i is, in a sense, an 
asymptotic equilibrium vector for the nonstationary Markov chain. It 
would be interesting to know wether the physically reasonable result of 
Proposition 2.1 holds under a more natural condition than (1.27). 

Our next result ammounts to an ergodic theorem for nonstationary 
Markov chains: Let f be a function 

y(t)= 1 

t 

of the Markov chain {X(~)}. We set 

f ( X  (')) (1.30) 
s = O  

and denote by E~{'} expectation values in the nonstationary Markov 
chain with transition probabilities (1.2) and with initial probability vector 
0". 

T h e o r e m  1.3, Let p~!-l.tl be the one-step transition probabilities of 
a discrete-time, nonstationary, finite Markov chain with a unique invariant 
probability vector re(t). Assume that p}/ 1.t) converges to po as t--, +oo. 
Assume further that either (i) P = (Pifl has a single ergodic aperiodic com- 
ponent and possibly transient states, or (ii) P has two ergodic components 
and possibly transient states, and p(t-1.t) satisfies (1.22) and lim,~ +0o 7r(t) 
exists (call it ~), or (iii) P has the form (1.5) with rn>~2, and P ( ' -  1'~) satisfy 
(1.25), and (1.27). Then we have, for any probability vector a: 

where 

(a) 

lim E~{ Y(')} = ( f }  (1.31a) 
t ~  +0:3 

( f )  = i f ~ ,  f i = f ( s i )  (1.31b) 
i = l  
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and 

lim E~ y(t)_ f.n~ =0 

(b) Suppose that for some 0 ~< e < 1, the limit 

w~j= lira -1 ~ (o~) 
, -  +cO t ~ (Pij" -~+) 

s = l  

exists (and is finite), then 

t - -  + o o  " i , j  

Furthermore, if in addition to (1.33), we have 

lira s.up t-~l+ ~ ~ (~) [Pi/ - ~j[ < +oo 
t ~  

s , ~  = 1 

then (a) for a = 0, 

(1.32) 

(1.33) 

(1.34) 

lira tE~{(Y ( ' ) -  (f))2} 
t ~ q-cO 

= E L  f j  - 
1,J 

+2~i lim -1 ~ (p~, , )_~j)  
t ~ + ~  t 

s , z  = 1 

+2 lim 1 ~ (~' , ,~=1 ,,(o,s)_ ) (s,,) ] - Gkrk, ni (Po --nJ) (1.36) 
s - < ' c  

and (b) for 0 < e <  1 

lim t 1 ~eo{(Y"~-(f()2} 
t - -  + c O  

=~fifj{2ni,_+cOtlim ~ ~" (pb~,~)-nj) 
i , j  s , z  = 1 

s < 7 ;  

+2 lim - - 1  ~ ( ~ p ( k O , S ) _ ~ i ) ( p b  s'~)-~j)} (1.37) 
t ~ + o o  1 + ~  s ,~= 1 

for each i, j (1.35) 
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This theorem is proven in Section4. The limit (1.31) and (1.32) 
together imply that y/t) is a consistent estimator of ( f ) ,  i.e., yit) converges 
in probability to ( f ) :  for every ~ > 0 

lim E~{IY( '~-<f)I>~}=O 
t--+ -t-oo 

This estimator is biased, and (1.34) gives the leading term in the large-t 
expression of the bias. A particular feature of Theorem 1.3 is that the 
leading terms in both the bias (1.34) and the variance (1.37) may be of the 
order t -1 +~ with e > 0, and both terms depend on the intial distribution ~. 
For stationary Markov chains the leading term of the variance is of order 
t - l ,  and is independent of ~r, while the leading term in the bias is of order 
t -1 or smaller, and, in general, it depends on ~r. For nonstationary Markov 
chains the size of e in (1.33) [and (1.35)] depends on two different effects: 
(i) the rate of divergence of the series (1.22), or (1.25b), which control the 
rate of the limit (1.23), and (ii) the rate of convergence of ~(t) to ~ as 
t ~  +Go. The faster the series (1.22), (1.25b) diverge [i.e., the slower 
(~(t)+O(t), and Cv(to) go to zero as t--* +o% v ~  +o% respectively] the 
faster the limit (1.23) [or (l.26)] is achieved. In turn, the faster the limits 
(1.23) ['or (1.26)] and (1.28) are attained, the faster the limit (1.29) is 
attained and the smaller the e is. In the annealing algorithm the two effects 
are competitive: The series (1.22) [-or (1.25b)] diverges fast if the tem- 
perature T(t) goes to zero slowly. On the other hand, z(t) converges to ~z 
fast if T(t) goes to zero slowly. Thus the first effect requires that as 
t--, +~,  T(t)>~C+61/logt for s o m e  • 1 > 0 ,  where C is the constant we 
mentioned in the beginning of this Introduction. This corresponds to the 
"adiabatic" effect we mentioned before. On the other hand, ~(t) converges 
to ~ like exp{ - ['1/T(t)](U2- U1)} where UI is the energy of the ground 
state(s), and U2 the nergy of the next excited state(s). Thus the second 
effect above requires that T(t) <~ (U2 - U~ - 62)/log t as t ~ +o% with some 
62 > 0. This corresponds to the "super-cooling" effect we mentioned before. 
However, only in very spcial circumstances do we have C < U 2 -  U1. Thus 
in general it is impossible to choose the annealing schedule T(t) so that the 
limits (1.33) and (1.35) exist with e=  0. Hence the mean-square error, i.e., 
(bias)2+variance, can be minimized by choosing T( t )=  C/log t, where 
C + 6 < C < C + 6' for some 0 < 6 ~< ~', and C the optimal constant (see 
Theorem 1.4 below). 

Dobrushin has established Ref. 63 a central limit theorem (CLT) for 

3 We thank again the referee who pointed out Dobrushin 's  work. 
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nonstationary Markov chains. For the annealing algorithm, his results 
yield that the CLT (with a normal limiting distribution) holds if 

3C 
T(t) ~>log t' large t (1.38) 

where C is the constant above [-actually Dobrushin's results yeild a little 
bit better than (1.38)]. We suspect that for the annealing algorithm, the 
result can be improved so that (1.38) holds without the factor 3. 

We end this Introduction by stating our convergence theorem for the 
annealing algorithm in a nonstationary version of the sampling method of 
Metropolis eta/.  (17) Let Q = (q~) be the transition matrix of an arbitrary 
symmetric (i.e., qo = qJg) and irreducible Markov chain; we refer to Q as the 
"proposal matrix." Let 

Uj= U(~), j =  1,...,n, U j>0  

be the energies associated with the states s, ..... s,. We define a time-depen- 
dent positive probability vector on the states by 

e-fl(t)uj 
nj(t) = •" e-~(z)ui, j =  1 ..... n (1.39) 

i = 1  

where 0 ~< fl(t)= 1/T(t)< +oo. Here T(t) is the temperature of the system 
at time t. (We use units in which Boltzmann's constant is 1.) We order the 
states to that 

U,~<U2~<U2~<"' ~<U~ 

Following Metropolis et al., (~v) we define the one-step 
probabi l i t ies  of  a n o n s t a t i o n a r y  M a r k o v  chain  by 

i r j,  p~! - 1,1) = qu min  { 1, e - ~(')(vJ- vi)} 

fq/j, if Uj<~ Ui 
= [qije-~(t)(uj ~s,), if Uj> Ui 

transition 

(1.40a) 

p(,-1,t)_ 1 -  E p~l 1,t) ii 
j r  

= 1 -  ~ 
j r  

Uj <~ Ui 

-"= qii + E 

qo-- ~ qoe-~(r)(~:J ui) 
j r  

Uj > U i 

q o ( l _  e ~(,)(uj v,)) 
j: uj> ui 

(1.40b) 
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It is easily verified that n(t) is an invariant probability vector of the matrix 
P(~-t") defined by (1.40). In fact p U - U )  satisfies the detailed balance 
(reversibility) condition 

7~i(t) P(ijt-- 1 , t )  = 7~j(t) p(t  1,t) (1.41) 

Clearly (1.41) implies (1.7a). We choose the proposal matrix Q so that ~(t) 
[defined by (1.39)] is the only invariant probability vector of P('-~"). Now 
assmne that lim,~ +~ f l ( t ) - f i ~  exists. The case ricO < +oo is in most 
respects trivial compared with the case fl~ = +m.  Here we consider only 
the case ricO = +oo. It is easily verifid that 

where 

Furthermore, 

lim p~'- ~'')=pU (1.42a) 
t--+ + c o  

~q~j, if Uj<~ U, (1.42b) 
i # j, P0 = (0, if U/>  Ui 

pii = 1 -  ~ q~ (1.42c) 
j r  

uj<<. u~ 

1 
if j e g  (~) Ig(1)l' 

lira rcj(t) = rcj = (1.43) 
t ~  + c O  

O, if j e S  (~) 

where S(a) denotes the set of ground states (i.e., the states of energy U1) 
and IS(1)l the number of ground states. If the proposal matrix Q is such 
that the limiting matrix P defined by (1.42) has m ~> 2 (irreducible) ergodic 
components, then we reorder the states so that P takes the form (1.5). We 
denote by S(1),..., ~(m) the ergodic states corresponding to the matrices 
S(~),..., S (m) of (1.5), and by /~  the transient states. Our assumptions on the 
matrix P(' ~'') imply that starting from any state i, any other state j can be 
reached via a finite chain 

Ai~ j :  i= lo  ~ ll ~12  ~ "'" --* lk_l  ~ j = l k  (1.44) 

of allowable transitions (i.e., q~.lo , >0) .  We denote by {Ai~j} all possible 
finite chains of the form (1.44), and define 

k 

E o =  min ~ max{0, Ul~-- Ut~_,} (1.45) 

E =  ma x E~ (1.46) 
l,J 
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Let 

and 

E 7 -  Ex(~).~ = min E U, 7 = 1 ..... m (1.47a) 
i �9 S~': ) 
j � 9  

E = rain E~ (1.48a) 
2 

Clearly E <~ E. We will see that the constants E and E control the rate at 
which flU) is allowed to tend to infinity as t ~ + ~ .  In a more general sam- 
pling method which we introduce in Section 5, the proposal matrix Q is not 
symmetric [-see (5.7) and (5.8)], and the corresponding constant E is 
defined as follows: Let 

E77,-Ex~,:lxcr)= min E~, 7 ~ ? '  (1.47b) 
' i ~ S(7) 

j �9 S(':') 

then 

E = min { min E~, rain E~v, } (1.48b) 

Here is our theorem concerning the convergence of the annealing algorithm 
for the nonstationary Metropolis sampling (1.40). 

T h e o r e m  1.4. Let P(' 1:) be the one-step transition probabilities 
matrix defined by (1.40). Assume that the proposal matrix Q is chosen so 
that lr(t) [defined by (1.39)] is the unique invariant probability vector of 
p(, 1,t~. Assuming fl(t)--* + m  as t-~ + ~ ,  we have the following: (1) If the 
proposal matrix Q is such that the limiting matrix P given by (1.42) has a 
single ergodic aperiodic component and possibly a set of transient states, 
then (1.29), (1.31), and (1.32) hold. Furthermore (i) if 

1 + 6  
fl(t) >~ log t, for sufficiently large t, some 6 > 0 (1.49) 

U2 - U1 

then we have (1.34) with e = 0 ,  and (1.36). 

(ii) If 

1 - 5 1  1 - 5 2  
- - l o g t < ~ f i ( t ) < ~ - - l o g t ,  for sufficiently large t (1.50) 
U 2 - -  U 1 U 2 - U 1 

with 0<62~<31< 1 ,  then (1.34) and (1.37) hold with some 0<62~< 
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(iii) If 

1 
f lU) - - -  log t, for sufficiently large t (1.51) 

U 2 -  U1 

then we have (1.34) and (1.37) with the factor t -~ replaced by (log 0 -1. 

(2) If the proposal matrix Q is such that P has two or more ergodie 
aperiodic components and possibly a set of transient states, then there 
exists an (optimal) constant Co [see (1.56) and remarks following it] such 
that if 

f l ( t )  <~ Co log t, for sufficiently large t (1.52) 

then )1.29), (1.31), and (1.32) hold, while if 

/3(0 ~> (Co + 6) log t, as t ~ + ~ ,  for some 6 > 0 (1.53) 

then (1.29) cannot hold. Furthermore, (a) if 

1 
Co ~ < - -  

U 2 -  U1 

and 

(Co a) log t ~ f lU) ~ Co log t, for sufficiently large t, some c~ > 0 

then we have (1.34) and (1.37) with some 0 < e <  1. 

(b) If 

1 
Co > - -  

U 2 -  U1 

(1.54) 

and 
1 + ~  

U 2 - U 1 
- -  l o g  t <~ fl(t) <~ (Co - 6)  l o g  t, sufficientlylarge t (1.55) 

with 

c5= 1 ) U 2 -  U1 
CO U 2 - -  U 1 1 + U 2 -  U1 

then we have (1.34) with e =  0, and (1.36). 

If P has exactly two ergodic components, then Theorem 1.1 yields that 
the optimal constant Co is given by 

1 Co=~ (1.56) 
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where E is defined by (1.48a). We conjecture that the optimal constant Co 
is given by (1.56) even in the case when P has more than two ergodic com- 
ponents. Part (2) of Theorem 1.4 holds if we replace Co by C0 = ~-1  where 

is defined in (1.46). Of course, (b) does not occur in this case, since 
E >  U 2 - U 1 .  Theorem 1.2 yields in general a worse constant than (1.56) 
(see Section 5). Theorem 1.4 together with similar results for a general class 
of sampling methods which include the Metropolis sampling method, as 
well as results concerning multidimensional random Markov fields are 
proven in Section 5. 

2. DISCRETE N O N S T A T I O N A R Y  FINITE M A R K O V  C H A I N S  

Parts (1) and (2) of Theorem 1.2 are essentially Theorems V.3.2 and 
V.4.3, respectively, of Ref. 11. The only difference between Theorem 1.2 and 
the above theorems of Ref. 11, is that the quantity C~(to) in (1.25a) (i.e., 
Dobrushin's ergodic coefficient!) involves a fixed number N of one-step 
transition matrices, while the number n j + l - n j  of one-step transition 
matrices in the blocks of Theorem V.3.2 of Ref. 11 varies with j, and it may 
go to infinity as j--* +oo. The condition of Theorem V.3.2 of Ref. 11 is 
necessary and sufficient for weak ergodicity, while our condition (1.25b) is 
only sufficient. However, condition (1.25b) is easier to verify in practice, 
and covers the case of the annealing algorithm. 

Here, we only outline the proof of Theorem 1.2, and present mainly 
some technical estimates which are needed in the rest of the paper, and in 
particular in the determination of the number e in Theorem 1.3. Also, 
because of its physical interpretation, we isolate (as we did in the first ver- 
sion of the paper) Proposition 2.1. 

The following lemma provides the basic estimate in the proof of 
Theorem 1.2. 

Lemma 2.1. Let Q = ( q 0 )  be a stochastic n •  matrix, 
x = (xl,..., x , )  an n vector, and y = xQ. Let osc x denote the oscillation of a 
vector x, i.e., 

osc x - max [xi- xj] = max x i -  min xi 
i , j  i i 

Then 

where 

osc y ~< [1 - C(Q)] osc x (2.1) 

C(Q) = m i n  ~ min(q/j, qkj) (2.2a) 
i ,k j =  1 

1 
= 1 --~ m a x j ~  1 ' ~  .= I q a -  qkjl (2.2b) 
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Remark. This lemma was motivated by the proof of Theorem 4.1.3 of 
Ref. 13. The constant 1 - C ( Q )  is the best constant for estimate (2.1). 
Lemma 2.1 is equivalent to Lemma V.2.4 of Ref. 11, and we refer to Ref. 11 
for its proof. 

Proof of (1.26). A straightforward repeated application of (2.1) 
yields 

max,k j ,~(,0.t) _ ,~(~0,,/i 
~" ij F k j  I 

i 

[ ( t  -- t o ) / N ]  

~< ]-[ [-1 - Cv(to)] max Ip,~ t~ E(, ,o)/NlS, t~_ p~f+ E('--to)/U3S, t)] 
i ,k  

(2.3) 

where [4]  denotes the greatest integer smaller or equal to 3. If ( t -  to)IN is 
an integer then the last factor in (2.3) does not appear, otherwise, we 
bound this factor by 2. Since 

1-1 [1  - C ~ ( t o ) ]  = 0 (2 .4 )  
v = l  

if and only if (1.25b) holds, estimate (2.3) yields (1.26). | 

If (1.27) holds, then the sequence {r~s(t)), j =  1,..., n, is a (bounded) 
Cauchy sequence, and therefore the limit (1.28) exists. As we mentioned in 
the Introduction, the following proposition says that (1.27) alone [-i.e., 
without condition (1.25)] implies that 7z = (~z~ ,..., re,) is an equilbrium vec- 
tor "asymptotically." 

Proposi t ion  2.1. If (1.28) holds then 

lira sub ~ ~ p,~0,ort,- rcj = 0 (2.5) 
to ~ + o r  t >~ to j 

Proof. A slight variation of the procedure in the proof of 
Theorem V.4.3 of Ref. 11 yields 

~ p!j~ t~rci- rcj 

t - - 1  

<~ Z ~l~s(s) -~j (s+ l) l+Zl~j-Ttj( to+ l)l+Zl~s(t)- '~jl  
s = t 0 + l  j j j 

This easily implies (2.5). | 

(2.6) 
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Proof of  Theorem 1.2." 

tj t 
j " i 

: ~. ~ (p}O,,o,_ ~,)(maXm -=,~ pb,0,,>) 

i 

Pm+ ) 2 IP}O'/~ rr+l <~ ~ ,  ( rnmaX rmjD(tq't) - -  rain (to't) 

j m l 

~j (to't) __ g j  

i 

UsingZ+r~+=l x ~ _o,o) = z_.t t'i}' , we obtain 

~ln{9,')-rcjl <~2maxlp}'o,"- p~},"t + ~ ~ p~!o,"rc,- r~, 
' r 9 i, k j  j ' . 

(2.7) 

This together with (1.26) and (2.5), yields (1.29). 
�9 ( o , t )  From (1.10a) we see that: lfp~ has a limit as t--+ + ~ ,  and the limit 

n!9,') = lim,+ ~'). We have also the is independent of i, then lim,+ +2 r,+ +~ 
following theorem: 

T h e o r e m  2.1. Suppose that condition (1.25) holds. Furthermore, 
suppose that the absolute probabilities c~} t) have a limit as t--+ + o% say, 

lim @')= ~y, j =  1 ..... n (2.8) 
t ~  -4-00 

Then p~0,,) has a limit as t--+ +o% and 

lim o!9,') = ~j, r z j  
t ~  +oo  

j =  1,..., n (2.9) 

R e m a r k .  The interesting feature of Theorem 2.1 is that it does not 
require any condition analogous to (1.27). The proof of this theorem is'the 
same as the proof of Theorem 1.2 once we establish 

lim sup ~ ~ p(+jt~176 o~j --- 0 
t o ~  +co t ~ t O  j 

This is obtained from (1.10b) in a straightforward manner. 

(2.10) 
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Next we prove a variant of Theorem 1.2 by replacing condition (1.27) 
by condition (2.11) below. 

T h e o r e m  2.2. Suppose that P(' 1,t) is as in Theorem 1.2, and that 
(1.25) [but  not (1.27)] holds. Furthermore, assume that the limit (1.28) 
exists, and that 

1+ L ( I  [1-C~(to)]<<.C< +~ (2.11t 
l = 1  v=l 

is bounde as, n ~ +oo, uniformly in t0>~ 1. Then (1.29) holds. 

Remark. This theorem is essentially Theorem V.4.4. of Ref. 11. Con- 
dition (2.11) implies a result stronger than Proposition 2.1, i.e., it implies 

lim Z Z P,~~ ~J = 0 (2.12) 
t ~ + c o  j i 

for every [o >~0. Since the proof of (2.12) is not directly transparent from 
the proof of Theorem V.4.4 of Ref. 11 because of the fixed number N in 
(1.25a), we spell out the details: 

Proof of (2. 12). Let to ~> t-o, and consider 

~ p'~i~176 + vN)~zi - ~zj 

~j 2l 2r~(tO'tO+(Vi Ui[ 1)N)7"Ci-~-~I]PEIJ "tO+(v-1)N'tO+vN] 

+~. ~{~'-x ' [ I~ "E'~176 

+~ ~,[to+(V--1)N+I]pS'~176 J (2.13) 

We use Lemma 2.1 to bound the first two terms, and obtain 

~j ~i P(j~176 l~j 

~< E1 - Cv(to)] ~ 2P~'io'to+(v--1)N]Tf'i--TgJi 

+ E1 - cv(to)] Y',I=j- rCZto + (v -  1)N+ 1]1 
J 

+~ ~,[,o+(V--1)N+I]nUO+(v--')N,'o+vN)--~j,_~ (2.14) 
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The last term is bounded by 

~ 7ri[to+ ( v - 1 ) N +  l Jp~  '~ 1)N'to+vNJ--7~j 

~< ~ [~jl-t o + (v - 1 )N + 1 ] - 7rj[ 
J 

N 

+ 2  ~ ~ l ~ j [ t o + ( V - 1 ) S + 2 ] - r c j [  
s = 2 j 

This, together with (2.14), yields 

~j ~ D(to, to+vN)7~ 
. Z -~rO" i - -  uj 

(2.15) 

~< [ 1 -  Cv(to)] ~ ~ p~to,,o+ (v 1)N]~i__TTj 

N 

+ 2 ~ ~[TzjEto+(V-1)N+s]-~zj l  (2.16) 
s = l j  

By (1.28), given e > 0 there exists to(e ) > 0 such that 

~lTcj(t)-Tcjl <e,  for t>~to(e ) (2.17) 
J 

Taking to large enough, iterating the first term in the right-hand side of 
(2.16), and using (2.17) we obtain 

. rij  vN)Tgi -- ~j ~ ~i D(i~176 

l = l k = l  

Using (1.25) and (2.11), we have from (2.18) for every to>~O 

lim • 2 p~fO, to+ vN)Tc i __ 7"~j = 0 (2.19) 
v ~ + o o  j 

i 

Applying this with to, to + 1, to + 2,..., t o + N -  1, in place of t-o, we obtain 
(2.12). II 

Remark. Clearly (2.11) is satisfied if Cv(to)~> C > 0. This is the case 
when the limit (1.4) exists, and the matrix P has a single ergodic corn- 
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ponent with aperiodic states, and possibly some transient states. Also, since 
every stochastic matrix P with a single ergodic component has (Ref. 13, 
Theorem6.2.1] a unique equilibrium distribution #, every subsequence 
{Tr(tn) } converges, by (1.7a), as n --* +oo to #, and therefore ~(t) converges 
to # as t --* +oo. These facts provide, via Theorem 2.2, a proof of part (1) 
of Theorem 1.1 (see also Theorem V.4.5 of Ref. 11) alternative to the one 
given in the next section. This result holds even if the ergodic states of P 
are periodic, provided that the limit in (1.17a) is taken in the sense that 
Cesaro means (Ref. 13, p. 101). 

We end this section by establishing a theorem concerning the rate at 
which the limit (1.29) is attained. First, we observe that C~(to) [-see 
(1.25a)], depends on to+ vN only, i.e., Cv(to)= C(to+ vN). 

T h e o r e m  2.3. Suppose that the assumptions of part (2) of 
Theorem 1.2 hold. Furthermore, suppose that zj(t) converges 
monotonically to ~j (for some js from above and the others from below). 
Suppose that for sufficiently large t, we have 

1 - t o  
C(t) > ~ - - ,  some 0 < K < 1 (2.20) 

t 

a 

I ~ ( t ) - ~ l - ~ l ~ j ( t ) - ~ j l < ~ t ~ _  ~ , some 0 < 6 <  1, a = c o n s t  (2.21) 
J 

Then for sufficiently large t 

(1) 
~ l p ~ ~  rcjl ~ O t-r--~ , e = min(~c, 4i) (2.22) 
J 

Proof. Combining (2.7) with (2.3) and (2.6), and using the fact that 
~zj(t) converges monotonically to ~], we obtain 

Et] 

~ IP~~ rcJl ~ 2  l-i [1-C(l)]+~lrcj(t~ (2.23) 
J l = t o + N  i 

The first term is estimated by using 

EO { c,? } 
[ 1 - C ( l ) ] ~ < e x p -  1~ [ l - C ( / ) ]  (2.24) 

l = t o + N  l = t o + N  

and (2.20). The second term is estimated by (2.21). The two estimates 
together easily yield (2.22). 

Remark. If the limiting matrix Pu has a single ergodic aperiodic com- 
ponent, then by the remark below (2.19), the first term on the right-hand 
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side of (2.23) converges to zero geometrically. Thus the rate of convergence 
of p~9 't) to ~rj is determined only by the rate of convergence of ~zj(t) to nj. 

3. C O N T I N U O U S - T I M E  N O N S T A T I O N A R Y  M A R K O V  CHAPNS 

In this section we prove Theorem 1.1 and establish a consequence of 
(1.12). Although in numerical simulations the time is always discrete, we 
introduce in this section continuous-time Markov chains, and prove 
Theorem 1.1 for such chains. The proof for discrete-time Markov chains is 
similar. We outline the modifications needed at the end of this section. 

The basic problem of the theory of continuous-time Markov chains 
consists in finding all solutions of the Chapman-Kolmogorov identity (1.8) 
subject to the constraints (1.9) and p~t0,t~>~0. 

Given a stochastic matrix p~(t),  t >~ O, i, j = 1 ..... n, we define a solution 
of (1.8) and (1.9) via Kolmogorov's system of "forward" differential 
equations (Ref. 7, p. 472) 

where 

Note that 

__d p~0,,) = - f i ( t )  plj~ + ~ f1(t)' ,ljto, t'i, ' 'a ,,(,0.,), 
dt / = 1  

t > to (3.1a) 

p~,0.,0) = {1,0, ifif i=Jicj (3.1b) 

Setting 

equations (3.1) read 

f j ( t )  = 1 - p j j ( t ) ,  j = 1,..., n (3.2a) 

f~(t) r i j ( t )=p~( t ) ,  for i C j ,  i , j =  1,...,n (3.2b) 

rjj(t) - 0 for all j = 1, 2,..., n (3.2c) 

O~rij(t), ~ r/j(t) = 1 (3.3) 
J 

P( t )  = [p/j(t)] 

,4 
p(to,,) = p~to,,)[ - I +  P( t ) ]  (3.4a) 

dt 

p(to, to) = I (3.4b) 
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where I is the n x n identity matrix. Also setting 

x(i)(t) = (p}~0,,),..., p~,0.,)) (3.5) 

and denoting by e~ the row vector with 1 in the ith entry and zero 
everywhere else, Eq. (3.1) reads 

dx(i)(t) - x(O(t)[ - I +  P(t)]  (3.6a) 
dt 

x ( i ) ( 0 )  = e i (3.6b) 

Taking differences, we derive an equation for .(t0,t)_ ,,(,o.t) IJ ij Y k j  

d [ x ( i ) ( t ) _ x ( k ) ( t )  ] = [ x ( i ) ( t ) _ x ( ~ ) ( t ) ] [ _ i + P ( t ) ]  (3.7a) 
dt 

x(i)(O) - x(~)(0) = e i -  e~ (3.7b) 

Thus we are led to study the differential equation 

x(t) = [xl ( t ) , . . . ,  x n ( t ) ]  

&(t) 
- x ( t ) [ - I +  P ( t ) ]  (3.8) 

dt 

subject to the conditions 

xi ( t )  >1 O, i =  1,..., n (3.9a) 

x(0) = probability vector (3.9b) 

or to some initial condition x(0) which satisfies [see (3.7b)] 

~, xi(O) = 0 (3.10) 
i = l  

or to some general initial condition 

x(0) =Xo (3.11) 

It is an easy consequence of a classical theorem in ordinary differential 
equations (2) that the system (3.8)-(3.10) has a unique solution [provided 
that P( t )  has continuous coefficients] for all t ~> 0. The same is true for the 
systems (3.8), (3.10), and (3.8), (3.1l). The problem we address here is the 
large-time behavior of all solutions of (3.8), especially when x ( t )  is a 
probability vector [see (3.9)] or it satisfies (3.10). 

822/39/1-2-7 
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P r o p o s i t i o n  3.1. Suppose that P(t) has continuous coefficients for 
t e [0, oo ]. Suppose that 

;0 lim T r ( I -  P(s)) ds < + oo (3.12) 

Then p(0,,) and its inverse (p(O,O) 1 are uniformly bounded as t--* + oo. 
Furthermore, no non-identically zero solutions of (3.8) goes to zero as 
t ~ + oo. In particular, 

lira (p(o,o ,,(o,t)~ , - i j  -ekj  i r  ivak 
t ~  +OD 

Proof. Let 

D(t) = det p~,0,,I 

Then by Theorem 7.3 of Ref. 2 we have from (3,4) 

d 
dt D(t) = D(t) Tr( - I +  P(t)) (3.13a) 

and therefore 

D(t )=D( to)exp[ - f jodsTr( I -P(s ) ) ]=exp[ - f jodsTr( I -P(s ) )  ] 

(3.13b) 

By (3.12), D(t) is nonzero as t ~  +oo. Therefore p(o,,) and (p(o.,))-i are 
uniformly bounded as t - ,  +co. Since p(O,,t is a fundamental solution of 
(3.8), this implies that no solution of this equation goes to zero as t--* +oo. 

For  the continuous-time analog of Theorem 1.1, we interpret the 
stochastic matrix P ( t ) =  ]pr  defined by (1.6) as the "infinitesimal 
matrix" of the chain specified by (3.4). Also, in (1.20) and (1.22), we 
replace the sums oer t with integrals, i.e., for continuous-time chains con- 
ditions (1.20) and (1.22) are replaced by 

f +~ [~b(t)+ O(t)] dt< +oo (3.14) 
1 

and 

f+oo [r + $ ( t ) ]  dt = +oo (3.15) 
1 
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respectively. We write 

as in (1.18), and 

P ( t ) =  P + V(t)  (3.16a) 

A =  - I +  P (3.16b) 

If P is of the form (1.5) with m = 1 (i.e., it has a single ergodic aperiodic 
componen t  and n - r 1 transient states), then lim k ~ co(pk)~ =/-9, while if it is 
of the form (1.5) with m = 2 (i.e., it has two ergodic aperiodic componen t  
and n -  r l -  r2 transient states) then 

lira p k =  
k ~  +co  

/~{~) ,,(~) 0 .......... 0 0.....0 1 . . . . . . . . . .  ?'~r 1 

,,(1} ,(1) 0 .......... 0 0.....0 
. . . . . . . . .  21 .  . ' 2 T . " . ~ 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 .......... 0 ,,(2) ,(2) 0.....0 
/~1 . . . . . . . . . .  /*r  2 

0 . . . . . . . . . .  0 , , (2 )  , , (2 )  0 . . . . . 0  
/*1 . . . . . . . . . .  PVr 2 

' , , ( 2 ~ .  0 . . . . . 0  # ~ l ) Z r l  + e2+  11 . . . . .  # ~ ) Z r l  + r2 -}- 1 , 1  ] ~ 2 ) Z r l  + r2 + 1 . 2 , ' " ,  ?~r 2 ~ r  I + r2 + 1.2 

, , ( 1 ) .  , , ( 1 ) .  H ( 2 ) "  H(2 )Z  ~ 0 . . . . . 0  
k" l  a'n, 1 . . . . . . . . . .  /'*'rl a 'n , l  / ' 1  a n , 2  . . . . . . . . . .  /"~r2 n,z 

(3.17) 

where zj./, 7 = 1, 2 j = r  1 + r2 + 1,..., n are defined by (1.15). We will need 
some spectral properties of the matrix A = - I +  P. 21 = 0 is an eigenvalue 
of A, and by Theorem 2.1 of Ref. 12 (Vol. II, p. 4), the algebraic multiplicity 
of 21 = 0 is equal to the number  m (here rn = 1 and rn = 2) of the ergodic 
components  of P. If the ergodic components  of P are aperiodic (as we 
assume here), then all other  eigenvalues 2m+1 ..... 2~ satisfy 

Re 2 i < 0 ,  i = m + l , . . . , n  (3.18) 

[ 2 i + 1 1 < 1 ,  i = m + l , . . . , n  (3.19) 

Inequalities (3.18) and (3.19) are not  true if the ergodic components  of P 
are periodic (see Theorem 3.1 of Ref. 12, Vol. II). By Jordan 's  theorem 
there exists a nonsingular  n x n real matr ix Q such that  

A = Q - 1 J Q  (3.20) 
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with 

j =  J1 

Jt 

(3.21) 

where Jo is an m x m zero matrix, J1 is a diagonal  matr ix  with diagonals 
the eigenvalues A m + 1 , ' " ,  Am + m I whose algebraic and geometric multiplicities 
are equal, and 

I Am,+ml+ i 1 0 0 0 i 
0 Arn+ml+ i 1 0 0 . 

Ji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , i = 2,..., l (3.22) 
0 . . . . . . . . . . . . . . . . . . .  2m+m,+i 1 

0 . . . . . . . . . . . . . . . . . . . . . .  0 A m + m l + i  

are mixmi, i=2,...,l matrices corresponding to eigenvalues whose 
geometric multiplicity is smaller than their algebraic multiplicity. Clearly 
m + m I + m 2 + -.- + rn t = n. Setting 

y(t) = x(t) Q-1 (3.23) 

and 

V(t)= QV(t)Q 1 (3.24) 

Eq. (3.8) becomes 

dy = y(t)J + y(t) V(t) 
dt (3.25) 

which is equivalent to 

y(t) = y(O)e 'S+ fo y(s) V(s)e (t-sv ds (3.26) 

It follows from (3.21) that  

C tJ = 

(e 0 
etJ t  

c rJ 

(3.27) 
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where 

etJO = 

gtJl ___ 

e t J i  = g t2m+m I +i 

1 o) 
�9 = m • m unit matr ix 

0 1 

t 
gt2m.l 0 ) 

\ 0 e t2~+~ 

t 2 

1 1 
2! 

0 1 t 

0 0 0 . . . . . . . . .  1 

~0 0 0 . . . . . . . . .  0 

tm i  1 

( m i -  1)! 

tmi 2 

( m i - 2 ) !  

t 

1 

(3.28) 

(3.29) 

i=2, . . . ,  l (3.30) 

P r o o f  o f  Theorem  1.1 ( C o n t i n u o u s - T i m e ) .  (1) If P has a single 
ergodic aperiodic componen t  (m = 1), then the similarity matr ix  Q has the 
form 

/ i,(1) ,,(1) (~ 1~ \  

\ q.,  . . . . . . . . .  q . .  ,l 

where the row vectors qi = (qil,..., qi,), i = 2,..., n, satisfy 

q 2 A  =22q2 

q l  + ml A = i 1 + ml ql + ml 

qml + 2 A = •ml + 2 qml + 2 

qml + 3 A = qml + 2 + )~ml + 2qmi + 3 

qml + m2 A = qml + m2- 1 -1- 2m, + 2 qm~ + m2 

qml + m2 A = I~ml + 3 qml + m2 + 1 

q . A  = q . _  l + 2.~ + tq .  

(3.32) 
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The inverse matrix Q-I reads 

Q i = (Z(1) ,  Z(2) ..., z ( n ) )  = 

-1 0 0 

1 0 0 

1 Zr I + 1,2 Zz  I + 1,3 

1 Zn, 2 Zn, 3 

0 

l r l  

(3.33) 

Zr I + 1,n ) 

~ n,n 

n - r  1 

This and (3.23) give 

y l ( t )  = Xl(t)  + ""  xn(t) -= 1 (3.34) 

Also, from x( t )=  y ( t ) Q  with Q given by (3.31), we have 

x i ( t )=l~Ix~y l ( t )+  ~ yj(t)qji,  i=  1 ..... r 1 (3.35a) 
j = 2  

xi(t)  = ~ yj(t)qji,  i=  r 1 + 1,..., n (3.35b) 
j = 2  

Using (3.18), (3.27), the uniform boundedness of l y(t)t ,  and the fact that 
V(t) = Q V ( t ) Q - I ~  0 as t ~ + ~ ,  we easily deduce from (3.26) that 

lira yg(t) = O, i=  2 ..... n (3.36) 
t ~  +cO 

This together with (3.34) and (3.35) yields 

lim x ( t )=#(1 )  
t ~ + o O  

This is equivalent [see (3.31)] to (1.17a) (continous time). The proof of 
(1.17b) is obtained from the compactness of n(t)  and the uniqueness of p(1) 
(Ref. 13, Theorem 6.2.1). 

(2) If P has two ergodic components (m = 2), then 
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The similarity matrix Q reads 

p , , \  I,,~,,,...,#~:, o o ...... o ...... o \  
/ , , , q  / o ...... o ,,~, ..... #~ : ,o  ...... o ! 

.................... I ,33 , 

where the row vectors qi = ( q i l  ,..., q l n ) ,  i = 3,..., n satisfy equations similar to 
those in (3.32). The inverse matrix Q - t  reads 

Q - ' = ( z  ~'~ ..... z(~) = 

'-1 0 0 0 

: : : : r l 

I 0 0 

0 1 0 

: : : : r 2 (3.38) 

0 1 0 0 

Z r l + r 2 +  1,1 Zrl  + r 2 +  1,2 Zrl+r2+l,3 Zrl+r2+I,n 

[ ~ ~ ~ /7 - -  r 1 - -  r 2 

Zn,1 Zn,2 Zn,3 Zn,n 

where Q~, y = l ,  2, j = r l + r 2 + l , . . . , n  are defined by (1.15) and satisfy 
(1.16). Using (3.38) and (3.23) we find 

y ~ ( t ) = x ~ ( t ) +  . . .  +Xr,(t)+xr~+r2+l(t)zr~+r2+X,l+ "'" + x , ( t ) z , , ~  (3.39a) 

y 2 ( t ) =  x r ,+~( t )+  " + Xr,+r~(O+ X,,+r2+,(t)Zr,+r~+~,2+ ' "  +xo(t)~. .~ 

(3.39b) 
Hence 

y , ( t )  + y2(t)  = x , ( t )  + .." + x , ( t )  (3.40) 

Also from (3.37), and x ( t ) =  y ( t ) Q ,  we obtain 

xi( t)  =#1~)yl ( t )+  ~, yj(t)qj~, i =  1 ..... r~ (3.41a) 
j = 3  

x ~ + ~ ( t ) = # I Z ) y 2 ( t ) +  ~ yj(t)qj,~+~, i =  1 ..... r2 (3.41b) 
j = 3  

x¢(t) = ~ yj(t)qj~, i = rl + r 2 + 1 ..... n (3.41c) 
j=3 
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Next, Eq. (3.25) in terms of components reads 

dyl  
dt = Yl(t) V' l( t)  + y2(t) ~'21(t) + ~ yj Vj,(t) (3.42) 

j = 3  

dy~ 
dt = Yx Pt2(t) + Y2 ~'22(t) + ~', yj Vj~(t) (3.43) 

j - 3  

d Y_3= 
dt )b3 Y3 § ~', yj(t) ~'j3(t) (3.44a) 

j - - 1  

dY---Ji=23Yi+Yi_l+ ~ y;(t) P~i(t), i=4 , . . . ,m1+2  (3.44b) 
dt j = 3  

and similar equations for the yis, i = ml + 3,..., n. Since Re flj < 0, j = 3,..., n, 
and V ( t ) = Q V ( t ) Q - ~ O  as t - - .+oo ,  Eqs. (3.44), and the similar 
equations for the yis, i = m~ + 3 ..... n, yield 

lim yi(t) = O, i = 3,..., n (3.45) 
t ~  -boo 

independently of the initial data y(0). 
Now using (1.6) and (3.38), a straightforward algebra gives 

~21(t) = - P2~(t) = ~(t) 

Ply(t )  = - P~l(t)  = ~,(t) 

and 

(3.46a) 

(3.46b) 

yj(t) ~) l ( t )=  - Z yj(t) ~ j~ ( t ) -  R ( 0  
j = 3  j = 3  

(3.47) 

Thus Eqs. (3.42) and (3.43) become 

dYl 
dt 

- ~b(t) y l ( t )  + c/)(t) yz(t) + R( t )  (3.48a) 

dy2 = ~b(t) yx(t) -- (~(t) y2(t) -- R(t)  (3.48b) 
dt 

First we prove (1.21) and (1.23), assuming (3.14) and (3.15), respectively. 
Let 

x(t) = x~J~(t)- x~k~(t) 
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where x(~l(t), x(kl(t) are defined by (3.5) (t o = 0). Then 
x~(t) + . .  + x,(t)  = 0, and by (3.40) 

y2(t) = -y~(t)  (3.49) 

Thus (3.48) are equivalent to 

dyl 
- - +  EO(t) + O(t)] y,  = R(t) (3.50) 
dt 

y2(t) = -y~( t )  

Hence 

yl( t ) --  yl(0) exp - [~b(s) + O(s)] ds 

+ f o d S R ( s ) e x p { - f ] [ r  (3.51) 

If (3.14) holds, then (3.51) implies that limt~ +co yl(t),  l imt~ +co Y2(I) exist 
and are different from zero. This together with (3.45), (3.41), and x ( t ) =  
x(i)(t)-x(k~(t) implies (1.21). On the other hand, if (3.15) holds, we will 
show that 

lira y l ( t ) = -  lira yz(t)=O (3.52) 
t ~  + o O  l ~  + c O  

Clearly the first term on the right-hand side of (3.51) goes to zero as 
t ~  +oo. We now show that the second term also goes to zero. Set 
t - s = 3. Then 

{ft } <~ d r r R ( t - r ) l  exp - [~b(~)+~(~)] d~ 

Since R e 2 j < 0 ,  j = 3  ..... n, Eqs. (3.44) yield that IR( t ) l~O as t--* +oo. 
Therefore we can apply the dominated convergence theorem to the right- 
hand side of (3.53), and deduce that it goes to zero as t--* +oo. This 
establishes (3.53), and yields (1.23). 
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Next  we prove (1.24) assuming (3.15) and the existence of 
lim t ~ +~ re(t). We set x(t) = ( ~(o,~ _~o ,~ ~.Pil , . . . ,  pg,,' ), i = 1,..., n. Thus 
xl( t )  + "'" + x , ( t )  = 1, and by (3.40) 

y~(t) + y2(t) = 1 (3.54) 

Thus Eqs. (3.48) become 

dy~ 
- -  + [-~(t) + ~ ( t ) ]  y~ = ~ ( t )  + R ( t )  
dt (3.55) 

y2(t) = 1 - y~(t) 

Hence 

yl ( t )  = yl (0)  exp - [~b(s) + ~9(s)] ds 

+ f ~ d s O ( s ) e x p { - f : E O ( r  

+ f s 1 6 2  

The existence 
such that 

(3.56) 

of l imt~ +co re(t) implies the existence of an 0 ~< t/<~1 

We will show below that  the existence of l imt~ +~ re(t) implies that  
l imt~ +~[(~(t)/O(t)+ ~( t ) ]  exists, and in fact that  

l i r a  ~ b ( t )  _ 
, ~  + .  r  + q,(t) '7 (3.58) 

Assuming this for a moment ,  we complete the proof  of (1.24). We will show 

lim y l ( t ) = l - l i m  y 2 ( t ) = q  (3.59) 
t ~  + c o  t ~  + 0 o  

This together  with (3.45) and (3.41) quickly yield (1.24). We now prove 
(3.59), The first term on the r ight-hand side of (3.56) clearly goes to zero as 
t ~ +oo.  By the argument  given for (3.53), so does the third term in (3.56). 
We will show that  

lim ds (~(s) exp - [~b(~) + = t/ 
t ~  + o o  

(3.60) 

lira r~(t) = rVc ~1~ + (1 - t/)/~/2) (3.57) 
t ~  + o 0  
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Since q~(t)> 0, we may change variables by setting 

dz = ~b( ~ ) d~ 

r =  r ds 

Thus 

I(t) - ds O(s) exp - [~b(~) + t#(~)] d~ 

: e "  [ - (3.61a) 

By (3.15), T ~  +co as t ~ +oo. First, we assume t /> 0, and set 

~b(~(z)) +0 (~ (z ) )  1 
- - + h ( z )  

r t/ 

h ( z ) ~ O  as z--* + ~  

Thus 

I ( t ) ; f  clz e (v-r e-I~h(z)dz 

= dr e - ~ ( 1 / n )  e - 

=t/- -  dz e-(ll~)~ + dz e (lln)r[e--SV~h(z)dz--1] 
T 

(3.61b) 

The second term on the right-hand side of (3.61b) goes to zero as 
T ~  +co. The third term is bounded in absolute value by 

fo ~176 & le -y~-~h(z)az- l ie  - (v~" (3.62) 

Since h ( z ) > ~ l - l / t / ,  we see that the integrand in (3.62) is bounded 
uniformly in T by an intergrable function. Thus the dominated convergence 
theorem is applicable, and it yields that (3.62) goes to zero as T--, +Go. 
Thus, by (3.61b), I ( t ) ~ t /  as t ~  +co. If t /=0 ,  then (3.61a) easily yields 
l(t) ~ 0  as t ~ +co. Thus we have established (3.59). Hence the proof of 
Theorem 1.1 will be completed once we establish (3.58). 
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Let 

a(t) = re(t) Q -1 (3.63) 

Since ~ ( t ) [ - I +  P( t ) ]  = 0, we have 

a ( t ) J +  a ( t )  ~'(t) = 0 (3.64) 

where 17(t) is defined by (3.24). Using the special form of (3.38), we obtain 
from (3.63) 

a , ( t ) = ~ l ( t ) +  . . -+7~r l ( t )+ rC , . l+ r2+ l ( t )Zr l+ r2+ l , l+  "'" + ~n(t)Zn,1 

O-2(t)=TZrt+l(t) + . . .  + TErl+r2(t)-}-Trrl+rz+l(t)Zrl+r2+X,2+ "'" + rCn(t)zn, 2 

a i ( t ) = ~ r l + r 2 + l ( t ) z r ~ + r : + l , i +  "'" +7~n(t)z , ,  i, i = 3 , . . . , n  

Thus 

and by (3.57) 

and 

O-l(t ) + O2(t ) ---- 1 (3.65) 

lim ~ r l ( t ) = l -  lira o-2(t)=~/ (3.66) 
t~  +0:3 t~  +cO 

lim ai( t )  = O, i =  3 ..... n (3.67) 
t~  +oO 

Equation (3.64) in terms of coordinates reads 

0"1 ~'11 ~- 0"2 ~'21 -~- ~ O-j ~'jl ~ 0 
j=3 

 j j2=0 
/= 3 

(Tj(J~- V) j i+G1 Pli--~- 02 P2i = O, 
j=3 

Using (3.46) and (3.65), Eqs. (3.68a, b) become 

GI( / ) - -  ~( t )  =~3 

a 2 ( t ) = l - - ~ l ( t )  

Vii 

(3.68a) 

O(t)+r 

(3.68b) 

i =  3,..., n (3.68c) 

(3.69) 
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We note that the (n - 2) x (n - 2) matrix 

B=B(t)=(Jji+ P'j,), i,j=3,...,n 

is nonsingutar for sufficiently large t. Therefore (3.68c) gives 

o.)= . . . . .  9,.)-  P2.] 

This and (3.69) yield 

(3.70) 

~ , ( t )  = 
(J(t) + ~(t) 

O(t)+$(t) [ - o i ( V 2 3 -  ~ '13 ) -  ~'23 ..... 0"1(~'2n-- ~, . ) i  V2,]B ' 

(3.7t) 

Since P'(t)--* 0 as t--* +0% the matrices B(t) and B-l(t) are uniformly 
bounded as t ~  +oo. Using this, the special form (3.38) of Q- l ,  the fact 
that V(t)-- ,0 as t ~  +o% and the explicit form of ~(t)+lp(t), it is easily 
seen that the second term in (3.71) goes to zero as t ~ + ~ ,  if (3.15) holds. 
Thus the first term on the right-hand side of (3.71) has a limit and 

lim ~b(t) lim al(t ) 

This established (3.58), and completes the proof of the theorem. | 

The following theorem is related to the rate of convergence of (1.33) 
and (1.35). It should be compared with Theorem 2.3. We state the result for 
continuous-time Markov chains, but it holds also for discrete-time Markov 
chains. 

Theorem 3.1. Let P(t)= [pij(t)]  be the infinitesimal matrix of a 
continuous-time, nonstationary finite Markov chain converging to P = (Po) 
as t ~ + ~ .  Assuming that P(t) has a unique invariant probability vector 
re(t), then (1) if P has a single ergodic aperiodic component and a set of 
transient states, the rate of convergence of 

]p!j0,,)_~j} ~ 0  as t ~  + ~  (3~72) 
j 1 

for any fixed to, is the same as the rate of convergence of 

Ircj(t)-~jl ~ 0  as t ~  + ~  (3.73) 
j--1 
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(2) If P has the form (1.5) with m = 2 ,  and assume the condit ions of 
Theorem 1.1 which ensure (1.24), then the rate of convergence of (3.72) 
depends on the rate of divergence of (3.15), and the rate of convergence of 
(3.73). In particular,  if 

and 

I - - K  
O(t)+O(t)>~ , 

t 

a 
 tx_ 

for sufficiently large t, 0 < ~: < 1 (3.74) 

for sufficiently large t, 0 < 6 < 1 (3.75) 

then 

I n!~~ - nil ~< t 1 ~, ~ = min(•, b), large t (3.76) 
j = l  

Proof. (1) F rom (3.35), we see that  the rate of convergence ofn(Y ~ r y  
to ~zj is the same as the rate at which y;(t), l=2, . . . ,  n tend to zero as 
t ~  +oe [note  that  y l ( t ) - = l ] .  N o w  from (3.25), ~o(t)= [y2( t )  ..... y , ( t ) ]  
satisfies 

d~( t ) 
- o)(t) a(t) + (~'12, ~'13,---, Pin) (3.77) 

dt 

where 

[B(t)]i i=J;j+Vo.,  i , j = 2 ,  3 ..... n (3.78) 

and the diagonals of (Ju), i, j =  2,..., n satisfy (3.18). The equat ion 

~z ( t ) [ - I+  P(t)] = 0  

in terms of ~(t) = rc(t)Q-1 reads 

a( t ) J+  a(t) ~'(t) = 0 (3.79) 

Using the fact that  Jo=0, and crl(t ) - 1, Eq. (3.79) becomes 

p ( t ) B ( t ) + ( P , 2 ,  Vl3 ..... Vln) ~--0 

p(t) = [ ~ ( t ) , . . . ,  ~ n ( ; ) ]  

3.80a) 

(3.80b) 

Compar ing  (3.77) and (3.80), we readily see that the rate of convergence of 
both  (3.72) and (3.73) is the same as the rate of convergence to zero of 

I v12(/)1 + " "  + [ Vln(t)[ (3 .81)  
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(2) From (3.41) we see that the rate of convergence to zero of (3.72) 
is the same as the rate of convergence of y l ( t ) ~ q ,  y2( t ) - - ,1 - t / ,  and 
yl(t) ~ O, l=  3 ..... n. Also, from the equations below (3.64), we see that the 
rate of (3.73) is the same as the rate of convergence of a~(t) --* r/, 
a z ( t ) ~  l - t / ,  and al(t)--*0, l=3, . . . ,n .  Now, Eqs. (368c) and (3.69), 
together with (3.75), yield 

~ ( t )  + q,(t)  = n + 0 t-vzT_~ , sufficiently large t (3.82) 

Using (3.56) [and the representation (3.61b)], a straightforward estimation 
implies that (3.74) and (3.82) give 

(1) 
[y l ( t ) - - t l l -=O t--f----;, as t--, +0% e = min(~c, 6) (3.83) 

Equations (3.44), etc., may be written in the compact form 

co(t) = [y3(t),..., yn(t)] 

do) 
d~-~ = co(t) B ( t )  ~- (71 ~'13 -[- 22 V23,---, Yl ~'ln "~ Y2 ~'2n) (3.84) 

where B(t)  is defined above (3.70). From (3.84) and (3.68c) we see that the 
rate at which Ico(t) l~0 is the same as the rate at which 
la3(t)l + " " +  I~rn(t)l ~ 0 ,  i.e., the same as in (3.75). This completes the 
proof of the theorem. | 

Remark.  As we mentioned in the Introduction, we no not know 
whether there is a theorem similar to Theorem 1.1 when P has m~>3 
ergodic components. In this case there are obvious generalizations of (3.37) 
and (3.38), which yield the following extension of (3.42) and (4.43): 

dy, 
dt - Yl  911 + Y2 ~'21 + "'" + Ym ~7ml + Yj gjl 

j = m + l  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 3 . 8 5 )  

dym at--Yl lm+'''+Ym mm+ 2 YJL 
j = m + l  

and equations for yj, j = m + 1,..., n similar to (3.44), etc. Also we have the 
generalization of (3.40) 

Yl(t)  + ' ' '  + ym(t)  = Xl(t  ) "1- "'" + Xn(t ) (3.86) 
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The generalization of (3.15) here is 

fl +~176 {~'ml(/) q- ~'m2(t) -i- "'" + ~" . . . .  1(t) 

-- F'll(t) . . . . .  E'm_l,,,_l(t)} dr= +oo (3.87) 

It can be shown that the integrand in (3.87) is positive. We do not know 
whether (3.87) suffices to control the asymptotic behavior of (3.85) and of 
the remaining equations for y j, j = m + 1 ..... n. 

The proof of Theorem 1.1 for discrete-time Markov chains is similar to 
the proof given above for continuous-time Markov chains. The basic dif- 
ferential equations (3.4) and (3.8) for continuous-time Markov chains are 
replaced by the following difference equations. Let us denote the one-step 
transition matrix p(t-~,t) by P(t). Then by definition 

p(to,,) = p(,o,, 1) P(t), for t o < t 

which implies the analog of (3.13a), 

where 

D(t) = D ( t -  1) d(t) (3.88) 

D(t) = det p(,0,,), d(t) = det P(t) 

Also introducing the vector x(t) as in (3.5), the Chapman-Kolmogorov 
identity (1.8) leads to the study of the difference equation 

x(r),= x(t - 1) P(t) (3.89) 

subject to the initial conditions (3.9) or (3.10) or (3.11). Our study of 
equation (3.8) may be used to study the difference equation (3.89). The 
necessary changes are straightforward and we do not spell them out here. 
[Our analysis of the example treated in the Appendix is based on the dif- 
ference equation (3.89).] 

4. THE L A W  OF LARGE N U M B E R S  A N D  THE V A R I A N C E  
OF A BIASED E S T I M A T O R  

In this section we prove Theorem 1.3. 

Proof of Theorem 1.3. Let 

)~(X(,)=s,)= {lo if X(')=si 
if x (t) c s i  
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then 

y(,)=_1 ~ f(X(s) ) = 
1 

s=l i s=l 
Using this representation we compute 

= f ,  T s = l . k  

= ~ f i a k ~  ~ ,t"(~ (4.1) 
i,k s =  1 

Since ek,"(~ - z~ ~ 0, its Cesaro means also converges to zero, i.e., 

1 ~ (p~O,,)_z;)~ 0 as t ~  +oo (4.2) 
l s = l  

This yields (1.31). Also if the limit (1.33) exists, Eq. (4.1) easily gives (1.34). 
New we prove (1.32) 

{( E~ Y(')- ~ firci 

= 2 f i -  Z [)~(X(S'=' ,)-~,] 
( k i  t =, 

,• 
= t-~ ~ L L E ~ {  [ z ( x  (s~ = s , )  - ~ ]  [ z ( X  ") = # )  - ~ j ]  } 

s,r = 1 i,j 

1 t 
= t-sZf~fJ.. 2 [E~{z(X(s) =s,)  z(X (') =sj)} -7c:E~,{z(X(S)=s,)} 

t,j s,z = 1 

- 7~,E,~{Z(X(~)= sj)} + ~,~i] 
Note that 

k 

I n(0,s)n(s,r) 
E (Yk Uki Fij 
k 

n(0,O r,(~,s) E , , { Z ( X ~ = s i ) z ( X ~ = s j ) }  = Y,,~,~,,,,j ,,j, 

y o,~p(~~ o 
k 

if s < v  

if s > r  

if s = ~  

822/39/1-2-8 
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Therefore  

~ k  F k  i U O" - -  ~ (Tk 
, S < ' C  k s > ' c  

~ n(O,s)--trCiEak ~ n (~ -- tz~j E Crk Fki Fki 
k s = l  k s = l  

p(O,r) n(~,s )  kj t.j~ 

+ ~CYk ~ p(kOi's)6ij+t2nirCj} 
k s = l  

= ~.. fffj  {2 ~ ak-~ ~ (p~Oi'*)--Zt,)p}S::) 
t,j S .< ~c 

1 
- -  27Zj E Ok "7 

k s = l  

- -  f f  k ~ , U k i  
"ovt  7 1 

s ~  

+ 1 1 ' 1 } 
2 -t rC/t s~>, (p~>S)_ rq) + t  (~i6~ ~,r~j) 

z = s + l  
= Z f , f J  2 ak t - t 

i , j  s =  1 

1 ) 
+ 2 r t J ~ ~  =~ t 

1 ~ (n(O,s)_ ~r 
-- 2rgj E ak t \Fki "~il 

k s = l  

-]- t T k 7  s = I  t F k i  '~i1 

+ 2~i- E (Pg'*)-- •J) 
t s=l z = s + l  

1 (~i6o - rti~j) } (4.3) +7 
For fixed s, we h a v e  n(5 ~) ,_~: - r ~ j - +  0 as z--+ + c ~ .  Therefore ,  for f ixed s, we  

have  

t (pbS.~)-~ri)--+0 as t--, +oo (4.4) 
z ~ s + l  
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This together with (4.2) imply that each term on the right-hand side of 
(4.3) goes to zero as t--+ +oo. This proves (1.32). Next, multiplying both 
sides of (4.3) by t 1 ~wege t  

t I - ~Eo y(t) - -  7~ i 

= ~  2 o-kt-i-7-/~ ,~-ki -,~i,~,'ij - 
i , j  s = l  r = s + l  

l ~ t - s  
+ 2rcj y~ G~ -t ~ - 7 -  (p~O,,~_ ~,) 

S = I  

1 _ 2rci ~ ak_ ~ (p~O,s)_ z,) 
t ~ k s = l  

1 
+ ~, ~ ~ ~, 

k s = l  

(Pu' - ~zj) (n ib , j -  ~jcj) (4.4) - 2~zi t~77 s= 1 ~=s+l t~ 

If the limit (1.33) exists, then the limit of the Cesaro means 

l ~ t - s  
7 -- (P?"~- ~') s=l t 

also exists as t--+ +0% and is equal to wk~. Therefore the second and third 
terms in the right-hand side of (4.4) cancel in the limit t ~ +oo. The fourth 
term goes to zero by (4.2). If the limit (1.35) exists, then the fifth and the 
first terms above also have limits as t-+ +c~. Thus in the limit t--, +0% 
we obtain (1.37) if e > 0 ,  and (1.36) if g=0 .  

Theorem 4.1.  Let p~'- 1,o be as in Theorem 1.3. Then we have the 
following: 

(1) If P has a single ergodic component and possibly transient states, 
then if the series 

Z I~J(s)-  ~jl (4.5) 
s = l j  

converges as t--+ +oo, then so does the series 

[pb~ - ~j[ (4.61 
s = l  
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Furthermore, if the series (4.5) diverges, then the series (4.6) diverges no 
faster than the series (4.5). 

(2) Suppose that P has two or more ergodic components, and that 
rcj(t) converges monotonically to rcj. Then (a) if the series 

(I [ 1 -  C(/)] (4.7) 
s ~ l l = l  

converges as t ~  + ~ ,  then the series (4.6) diverges no faster than the series 
(4.5); (b ) i f  

1 - - / s  
C(t) ~> - , large t, some 0 < tc < 1 (4.8) 

t 

and 

a 
Lzc(t)-~L<<.tl_ ~, for larget ,  0 < 6 < 1  (4.9) 

then the series (4.6) diverges no faster than O(t ~) with e = min(~c, b). 

Remark. If P has exactly two ergodic components, then (4.7) and 
(4.8) may be replaced by [compare with (1.22)] 

e x p { -  ~ [~b(z)+0(z)]}  (4.7') 
s = l  *=1 

and 

l i n k  
~b(t) + 0(t)  > ~ - -  (4.8') 

t 

respectively. 

Proof of  Theorem 4. I. Part (1) of the theorem is a consequence of 
the Remark following the proof of Theorem 2.3, or part (1) of Theorem 3.1. 
Part (2) is a consequence of Theorem 2.3, or part (2) of Theorem 3.1. 

5. C O N V E R G E N C E  OF THE A N N E A L I N G  A L G O R I T H M  

In this section we prove Theorem 1.4, and establish a similar result for 
a class of nonstationary sampling methods which include the Metropolis 
method (1.40). We also consider a sampling mthod for multidimensional 
Random Markov Fields. 
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Proof of Theorem 1.4. (1) The validity of (1.29), (1.31), and (1.32) is 
a consequence of part (1) of Theorem 1.1. From (1.39), we see that 

Irc(t)-rcl=e -p(t)(u2 ~:~+(lower-orderterms), as t ~  +oe (5.1) 

This and Theorem 4.1 imply the assertions in (i), (ii), (iii) of the theorem. 

(2) If P has exactly two ergodic components, then part (2) of the 
present theorem is a consequence of part (2) of Theorem 1.1 and part (2) of 
Theorem 4.1. The constant Co is given by (1.56). If P has more than two 
ergodic components, then the validity of (1.29), (1.31), and (1.32) is a con- 
sequence of Theorem 1.2. Now we observe that ~j(t) converges to ~j 
monotonically as t ~ +oe. Indeed, i f jE  g(1), then one easily sees that zr~(t) 
is strictly increasing in fl(t) for all f l ( t )> 0, while i f j r  o r then there exists 
a sufficiently large fi0 such that ~j(t) is strictly decreasing in fi for all fi >1 flo. 
This together with part (2) of Theorem 4.1 yields the rest of the theorem. 

As we mentioned in the Introduction, Theorem 1.2 gives, in general, a 
worse constant than Theorem 1.1. We exhibit this is some explicit exam- 
pies, First, consider the case with three states sl, s2, s3 such that 

U~ < U2 < U3 

and q12 = q21 = 0. The matrix p(t-1,,) reads 

l _q13e-~(u3-ut) 0 

qz3e ~(v3-u~)| (5.2) p(t l,t)~_ 0 1--q23 e-fl(U3-U2) 

q31 q32 1 - q31 - q32 ! / 

In order 7r(t) to be a unique invariant probability vector we must have 
q31 ~ 0, q3e r 0. A straightforward computation gives 

/~= U3 U1 (5.3a) 

E = U 3 -  U2 (5.3b) 

Thus ~ >  E and C0 < Co. Now we consider four states such that 

U 1 < U 2 < U 3 < U 4 (5.4a) 

q31 = q 3 2  - - 0  (5.4b) 

q12 -~ 0 (5.4C) 

Since q12r the state s2 [in P(oe)] is transient. A straightforward com- 
putation shows that re(t) is the only probability vector of P( ' - I"!  if and 
only if q34 5 d 0. In this case [assuming (5.4)], the state s3 is absorbing, and 
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the state s 4 is transient. Reordering the states so that P has the form (1.5), 
the matrix p(t-1,,) reads 

p(t l,t) = 

i 
1 q12e l~(u2-ul)_q24e ~(u4 ui) 0 q12e-~(u2 vl) ql4e-[ l(u4 ut) 

i 
q34e-~(u, u3) I 0 1-q34 e B(u4 u~) 0 q24 e-~(u4-u2) / 

q2~ 0 1-q21 q24e ~(v4 u2) 

q41 q43 q42 1 - -q41--q42--q43]  

A straightforward computation gives 

E =  U 4 - U 1 

E = m i n ( U 2 -  U1, U4-  U3) 

(5.5) 

Thus we have again E > E and Co < Co. 
Next we introduce a class of nonstationary sampling methods which 

contain the two most common methods used in statistical mechanics, i.e., 
the metropolis and the "heat-bath" sampling methods. The stationary ver- 
sions of our sampling models appear in Ref. 10. Let f ( x )  be a smooth 
function defined in the interval [0, 1] such that 

0 4  ~(x)f ~<1, for O~<x~<l (5.6a) 
l + x  

lim f ( x ) =  1 (5.6b) 
x ~ 0 +  

Let Q = (q~) be the transition matrix of an arbitrary irreducible Markov 
chain. Here Q is not necessarily symmetric. We shall again refer to Q as the 
"proposal matrix." Let ~j(t) be defined by (1.39). We define a 
generalization of (1.40) by 

f (min{(qi /qJi)[ni( t ) /nJ( t )] '  (qJi/q~)[rcJ(t)/ni(t)]}) (5.7a) 
i # j, p~t- 1,t)= qij 1 + (qgqji)[ni(t)/nj(t)] 

p~f 1,,)= 1 - Z P~'- 1'') (5.7b) 
jT~i 

For f ( x ) =  1 +x,  we obtain an extension of (1.40) with a nonsymmetric 
proposal matrix Q: 
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i r  p(~- 1,/) = 
u 

qo 

q~j 

(5.8a) 

PIf 1,,): 1 - ~ P})f-t,~) (5.8b) 

For f ( x ) =  1, we obtain 

qj,~j(t) 
i~ j ,  P~t 1,')=q~j q~Trg(t)+qj, Tzj(t ) (5.9) 

For  a symmetric, qu= qji, proposal matrix, (5.9) is the heat-bath model 

 j(t) 
i #  j, p,~,- 1,t)= q~ ~zi(t) + ~zj(t) (5.10a) 

PI[-1,,~ = 1 - ~ P~ 1,,) (5.10b) 

Choosing f ( x ) =  1 +2(�89 7, 7~> 1, we obtain a sampling method which 
interpolates between (5.9) for 7 = +o% and (5.8) for V = 1. 

Theorem 1.4 holds for the nonstationary Markov chain defined by 
(5.7). The proof of the theorem in this case is the same as before, and we 
will not spell out the details. 

Next we consider briefly sampling methods for multidimensional 
Markov random fields. First we recall the definition (14) of a Markov ran- 
dom field (MRF) on a finite square lattice Zam, with M =  m d sites. A set 

0 :  {O~c Zam �9 aeZam} 

of subsets 0a of Zam is said to be a neighborhood system if: (a) a~0a ,  (b) 
a e 0 b i f a n d o n l y i f b a 0  a . A s u b s e t  c a C _  Z m is a clique if every pair of dis- 
tinct sites in C are neighbors. The set of all cliques will be denoted by ~g. 
With each site a ~ Zdm we will associate a "spin" s a with values in the spin 
state space 

s =  {0, 1,..., j -  1} (5.11) 

The set of all possible configurations 

s {s= (sl, s2,..., sM): saeS ,  a :  1,..., M} (5.12) 

will be referred to as the state space. A potential Vc(s ) associated with a cli- 
que C e c~, is a function on the state space (2, which depends only on those 
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coordinates so of s for which a e C. The energy function is a function on f2 
defined by 

U(s)=  ~ Vc(s ) (5.13) 
CeCg 

The probability measure on .(2 

7z(')(s) - ~ (5.14a) 

Z =  ~ e -r (5.14b) 
sift'2 

at temperature T( t )=  1//~(t), is called the Gibbs distribution relative to the 
neighborhood system O. Finally we shall use the conditional probabilities 
defined by 

7c(t)(sa I sb, b va a) = 7z(~ (t) , s = ( s l  ..... SM)~s (5.15) 
Zso~s ~c (s) 

It is easily seen that the right-hand side of (5.15) depends on so and on Sb 
with b~0a.  The Gibbs distribution (5.14) relative to the neighborhood 
system 0 defines a Markov random field (MRF) X relative to 0, i.e., a 

d family of random variables J r=  {Xa, a~Zm} ,  which satisfies (relative to 
some probability measure P on f2) 

P ( X = s ) > O  for all s~s (5.16a) 

P(Xa=Sa lXb=sb ,  b : / = a ) = P ( X o = x o l X b = s b ,  beOo) (5.16b) 

for every a E Z ~ ,  s=(s l , . . . , s~ (~ f2 .  Equation (5.16b) is the Markov 
property of the MRF. It is well known (14'a) that every MRF, X, relative to 
0 [i.e., a set of random variables X =  {Xa, a ~ Zam} satisfying (5.16)] comes 
from a Gibbs distribution re(s) relative to 0, and in fact 

re(s) = P (X  = s) 

We note that the total number of states (configurations) is 

n =  1121 =jM, M = m  d (5.17) 

We will now define sampling methods via Markov chains 
X( ')= {X~ ~ ..... X(~ } on the state (configuration) space f2. Here each X(f is a 
Markov chain associated with site a e Za~. There are at least three ways to 
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define a Markov chain (1~ associated with the MRF defined by the Gibbs 
distribution (5.14): 

(1) X ( t - 1 ) - - s ( i ) = ( S ~  ..... s~ )  and X( ' )=s(J )=(s l  jl ..... o,~t:~(~)i have all 
coordinates different. 

(2) X (' ~)=s (i) and X(t~=s (j) differ only at a single site randomly 
chosen among the M sites of Z~. 

(3) X ( ' - ~ ) = s  (~) and X( '~=s (i) differ only at a single site, the site 
being selected from a fixed rather than random sequence. 

Our basic convergence Theorem 1.4 can be adopted to handle any one 
of the above procedures. But we shall restrict ourselves in giving only the 
generalization of (1.40) and (5.10) to method (2). Let q(a), a~Z~m, be an 
arbitrary strictly positive probability measure defined in Zam . Suppose that 
at time t - 1, we have X ( '-  ~) = s (~) = (s~ i) ..... s(~i), Choose a site 7, e Z,a, from 
the distribution q(a), and change the spin at the site 7,. Let s (j) be the new 
site. Then in analogy with (1.40) we define the transition probability 

i C j ,  p(x(~3=s(J) lX (t 1)=s(i) ) 

~q(T,) 
= [q(Tt) exp[ -/~(t)( U(s (J)) - U(s(g))), 

if U(s (j)) <~ U(s (i)) 
if U(s(j) )> U(s(e) ) (5.18) 

and in analogy with (5.10) 

p(x( , )  = s(J) I X ( , -  1) = s(i)) 

exp { - flU)[ U(s(jl) - U(s(il)] } 
= q(7,) 1 + exp{ - f l ( t ) [ U ( s  (j)) - U(s(i3)] } 

(5.19) 

Without spelling out the details, we note that Theorem 1.4 applies to the 
Markov chains defined by (5.16) and (5.17). 

Next we note that if the spin state space S [see (5.12)] has only two 
states, i.e., J =  2, then the right-hand side of (5.17) is equal to 

q(y,) (') (J)s~J), rc (st, I a # y,) 

where the conditional probability is defined by (5.15). This leads to the 
following generalization of the "heat-bath" sampling method (5.17): Let 
q(a) be as above, and suppose that s(J)= (s~J~,..., s(~)), s(i)= (s~i),..., s~)  differ 
only on one site 7, chosen from the distribution q(a). Then 

P(X(t~:s(J)IX ('-1) : s(~ : q(Tt) n (')(s~,, (j) I s~ j~ = s(j~, ar  (5.10) 
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defines a Markov chain. With trivial modifications Theorem 1.4 applies to 
this Markov chain. The Markov chain (5.18) with a deterministic sequence 
{7,} has been treated in the appendix of Ref. 8. 
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APPENDIX 

In this appendix we present an example with two absorbing states. The 
example illustrates various aspcts of nonstationary Markov chains with 
phase transitions. In particular, it clarifies the questions we posed in the 
Introduction [above (1.11)], and it illustrates the criticality of conditions 
(1.22) and (1.25). 

We will denote the discrete time by n = 0, 1, 2 ..... The one-step trans- 
ition matrix is 

P("-"~I=(1-g(n)f(n) 1 -f(n)Jg(n) ~ (All  

where 

0 <~f(n) < 1 (A2) 

0~< g(n)<  1 (A3) 

lim f ( n ) =  lira g ( n ) = 0  (A4) 
r t ~  + o o  r t ~  + c o  

The limiting matrix is 

0) 
and it defines a Markov chain with two absorbing states. Any equilibrium 
probability distribution of P is a convex combination of 

]/(1)=(1,0) 

#(2) = (0, 1) 
(A5) 
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The unique invariant probability vector of P(~ ~'~ is 

~(~)= [ f(n) g(n) ] (A6) 

We readily see that no matter how fast f (n )  and g(n) converge to zero, rc ("~ 
has no limit as n ~ +c~ unless f(n)/g(n) [or g(n)/f(n)] has a limit. 

k e m m a  A.1. For each no = 0, 1, 2,..., and n > no, we have 

p(.,o,.) = (1 - a(no, n) G(no, n) 
F(no, n) 1 - F(no, n)] (A7) 

where F(no, n) = p(-o,~)21 , G(no, n) = p~o,.~ are given by 

F(no, n)=f(n)+ [1 - f ( n ) -  g(n)] F(no, n -  1) (A7a) 

n--1 in I 
= f ( n ) +  ~ f (k)  [ 1 - f ( l ) - g ( l ) ]  (ATb) 

k = n 0 + l  l = k + l  

G(no, n)= g(n) + [ l  - f ( n ) -  g(n) ] G(no, n -  1) (A8a) 

n--1 ~ I  
= g(n)+ ~" g(k) [ 1 - f ( l ) -  g(/)] (A8b) 

k--n0+ 1 l k + l  

Furthermore 

Proof. 

p(n0,n/l 1 -- ~'21n(n0'n) ---- t'22n(n0'n) - -  F12"(n0"n~ ---- 1 -- F(no, n) -- G(no, n) (A9a) 

1-F(no, n)-G(no, n)= (I [ 1 - f ( k ) - g ( k ) ]  (A9b) 
k = n 0 +  1 

l 

= p~0.n 1)[1 _ g(n)] + (1 --p~o,~-'))f(n) 

This is the same as (A7a). By iteration we obtain (A7b). The proof of (A8) 
is similar. Adding (A7) and (A8), we easily obtain (A9). | 

N o t a t i o n .  In the remainder of this appendix we will write 

F(n) = F(O, n) and G(n) = O(O, n) 
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From (A9) we get 

Corol lary  A1. (a) If 

+ c o  

~, I f ( n ) +  g(n)] < +oo (A10) 
n = l  

then the following limits exists and are different from zero: 

lim (p~O,,)_ p(2O,n))= lim (p(2 ~ - p~O,n)) 
n ~  q-oo n ~  + c o  

+ c o  

= lq [ 1 - f ( k ) -  g(k)]  r  (A l l )  
k = l  

(b) If 

+ o o  

[-f(n) + g(n)]  = +c~ (A12) 
n = l  

then the following limits exist and are zero: 

lim (p]O,~) _ p(2~ = lim \F22[ r j ( 0 ' n )  - -  / - '12n(0 'n)]- -  0 1  - (A13) 
n - ~  + o 0  n ~  +two 

Remarks. (1) Corollary A1 has an obvious interpretation in terms of 
the Borel-Contelli Lemma (Ref. 7, p. 200). 

(2) If (A10) holds, re ") may or may not have a limit as n -* +o% but 
we shall see in Theorem A1 that p(o,n) always has a limit. 

(3) If (A12) holds, then we will prove that if ~(n) has a limit, then so 
does p(0,~ [see (A33) and (A34)]. But if rc (n~ has no limit, p(O,n) may have a 
limit [see example (A19)], or it may not have a limit [see example (A27)]. 

Theorem A.1. 
n --+ + oe, but 

If (AI0) holds, then _(0,n) ~,,j , i, j = 1, 2, have limits as 

lim ,,(o,n) ,,(o,n) ~.j~ r lim e21 
n ~  + o o  /1--+ + o o  

lira pO}~ # lira e12"(~ 
n ~  + o o  n ~  + c o  

(A14) 

Proof. From (A7) 

F(n) = [-1 - f ( k )  - g(k)] ' [1 - f ( m ) -  g(m)] 
k ~ l  l 1 1 - I m  = 1 
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By (A10) 

lim (] [1- f (k) -g(k)]=Co,  C o <  + ~ ,  C o # 0  (A16) 
n ~  + o o  k = l  

Without loss of generality we may assume that f ( n ) +  g(n)< 1. Then 

f(l) <1__ ~ f(l) (A17) 
,= t ]-Ilm= 1 [1--f(m)--g(m)] Co,=l  

By (A10), the right-hand side of (A17) converges as n --+ +oo. Hence, since 
the left-hand side of (A17) increases with n, it has a limit as n -+ +c~. This 
together with (A16) implies that F(n) has a limit as n-+ +oo. The same 
way we prove that G(n) converges as n ~  +oo. This establishes the 
existence of the limits of n{9 ,~ (A14) is now a consequence of ( A l l )  and r t j  ~ 

(A16). | 

Here is an example where ~n) has no limit as n -~ + ~ ,  but p~O,n) has a 
limit and 

lim p~O,,O= lim p~O,n~ 
n ~  -?oo n ~  + o 0  

/ - ' 22  - -  / - ' 12  

(A18) 

Take 

2 1 + ( -1 )"  
f ( n ) = - ,  g(n)- , for 

n n 
n~>5 (A19) 

Then 

g ( 2 n +  1 ) =  ( 1 ,  0 )  

Thus ~n~ has no limit as n-~  + ~ .  We will show that 

n ~  + c o  3 
(A20) 

Noting that 

i 
f ( 2 n ) =  g ( 2 n ) = -  

n 

g(2n + 1 ) = 0 
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we compute 

g(2n + 1) = g(2n)[1 - f ( 2 n  + 1)] 

+ g(2n - 2)[1 - f ( 2 n  + 1)3 E1 - f ( 2 n )  - g(2n)] [1 - f ( 2 n  + 1)] 

+ g(2)[1 - f ( 3 ) ] [ 1  - f ( 4 ) -  g(4)][1 - f ( 5 ) ]  " .  

El - f ( 2 n  - 1)][1 - f ( 2 n ) -  g(Zn)-] [ 1 - f ( Z n  + 1)] 

A straightforward algebra gives 

1 
G ( 2 n +  1)= {2.(2.2+ 1)+ 3.(2.3 + 1)+ ... 

(n - 1 ) n(2n + 1 ) 

+ ( n - 2 ) [ 2 ( n - 2 ) +  1] + ( n -  1)[2 . (n-  1)+ 1]} 

from which we easily obtain 

1 
lira G(2n+ 1 ) = -  (A21) 

n~ +0o 3 

Now, from (A8a) 

G(2n) = G ( 2 n -  1)+ g ( 2 n ) -  [ f ( 2 n ) +  g(2n)] G ( 2 n -  1) 

Therefore 
1 

lim G(2n) = -  

This and (A21) imply that G(n) has a limit and 

1 
lim G(n) = -  (A22) 

From (A9b) we have 

lim [1-F(n)-G(n)]=O 
n ~  + o o  

(A23) 

because of (A12). 
Thus 

2 
lira F(n) = -  

n~ +~o 3 

This establishes (A20). 
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Next we give another specific example where both ~z (n/and p(O,n) have 
no limits as n---, +oe. The choice of functions f (n ) ,  g(n) was motivated by 
the following observation: For  any fixed m we have from (A7a) 

n - - 1  

F(n) -F(n-m)=f (n )+  ~ f(k) ~ [ 1 - f ( l ) - g ( l ) ]  
k = n - - m + l  l - - k + l  

l ~ n  m + l  

Since F(n - m) <~ 1, f(n), g(n) ~ 0 as n --* 0% we see from (A24) that if F(n) 
has a limit along a subsequence {nj}, it has the same limit along the sub- 
sequence {nj-m}. Thus in order to construct an example where F(n) has 
two different limits along two subsequences {nj} and {nj}, the distance 
n J - t ~  must go to infinity with the subsequences. 

Here is our example: Let f(n) be such that 

f ( n ) =  + o r  (A25) 
n = l  

Set 

N=N(n)=f(1)+ f(2)+ --. + f(n) (A26) 

and denote by n(N) the inverse function. We choose h(n) as follows: 

g(n(N)) = (2 + kt cos N) f(n(N)), 0 </~ < 1 (A27) 

Clearly N-- ,  +oc as n ~ +oe and vice versa. We will construct two sub- 
sequence {Nj} and {~j} which give rise to two different limits for F(n(U)). 
From (A15) 

F(n) = exp log[1 - f ( l )  - g(l)]  f(k) 
l 1 k = l  

x exp - ~ l o g [ 1 - f ( l ) - g ( l ) ]  (A28) 
l = l  

We extend a function h(n) defined on the positive integers, to a function 
/7(x) defined on the entire half-line x >/0, so that 

/ ~ ( x ) = f ( k )  for k -  1 <x<~k 

Then 

h(kl = d x + h ( 1 )  
k = l  
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Thus 

and from (A28) 
i 

n 

N= f(x) dx+f(1) 
1 

Gidas 

F(n) = f ( 1  )[1 - f ( 2 )  - g(2)] ..- [1 - f (n)  - g(n)] 

+ f :  dy37(y) exp { f f  dxlog[l-37(x)-~(x)]} 

Since 37(y)> O, we may change variables by setting 

d~ =37(x) dx 
and obtain 

F(n) = f (1 ) [1  - / ( 2 ) -  g(2)]  " �9 [1 - f ( n ) -  g(n)] 

+ I : d z e x p { f N d ~ l o g [ l - f ( x ( ~ ) ) - ~ ( x ( ~ ) ) ] }  

= f ( 1 ) [ 1  - f ( 2 )  - g(2)]  " .  [1 - f ( n ) -  g(n)] 

+ dz exp d~ log[1 - 3 7 ( x ( ~ ) ) ( 3  + ~ cos 3)] (A29) 

The leading term as N - ,  +o% in the integral is 

~ dz exp [ -  fNd~(a + # cos ~)] 

= [~ dz exp[ - 3(N - z) - #(sin N -  sin z)] 
JO 

=f:dtexp(-3 t )exp{-#[s inN-s in(N- t )]}  (A30) 

the limit of (A30) along N-=2krc and N = ( 2 k + l ) m  For We consider 
N-= 2k~, we have (recall that 0 < # < 1) 

~2~k fo o dt e -3t e ,usin t k ~ + ~  ~ dt e-3te -#sint (A31) 
"JO 

and for N =  (2k+  1)~ 

~(2k+ 1)re fo e d t  e - 3 t e  "usint k,+oo ~ dt e 3te+~tsin t (A32) 
~0 

It is easily seen that the limits (A31) and (A32) are different. The first terms 
on the right-hand side of (A29) goes to zero as n ~ +0% and it can be 
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verified that the error term we neglected in the integral of (A29) has no 
contribution as N ~  +oc. Thus F(n) has two limits, (A31) and (A32), as 
n--, +oQ along the subsequences n(2~k), n ( (2k+ 1)~), k ~  +0% respec- 
tively. 

By Theorem 1, if (A10) holds, then p(O,,) always has a limit which 
satisfies (A14). Therefore, in this case, if ~l-) has a limit, it cannot satisfy 
(1.11). In contrast, we prove now, that if (A12) holds and 7c (") has a limit as 
n ~ +0% then p(O,,) also has a limit, and if 

lim 
n ~  q-o~ 

then 

lim P(~ = ( 7rl 7"C2) 

n ~  +or  7~ 1 7"C 2 

i.e., (1.11) holds. To show this, we set 

F(n) = rc I + qS(n) 

f(n) + g(n) 1 
- + O ( n )  

f(n) rc 1 

O(n)--*0 as n--+ +oo 

~(")= ~ = (re1, re2) (A33) 

(A34) 

From (ATa) we derive 

qS(n) = -7c 1 f(n) O(n) + [ i  f(n)rcl f(n) 0(n) ]  q~(n - 1) (A35) 

Iterating (A35), and using a representation similar to (A29), we have 

1 
- - -  ~ ( n )  

7~ 1 

[ 1(;1 ) = 1-f(k---2-f(k) ~p(k) ' { l [ f (m) / rc l ] - f (m)  ~p(m)} 
k = l  7gl ~ ~ I m = l  - -  

+ f ] d y f ( y ) ~ ( y ) e x p { ~ d x l o g C l _  f(x)~t y(x)  ~ (x ) ]}  

k = 2  7"('1 

X e x p ( ~ d ~ l o g { 1 - j T ( x ( ~ ) ) [ l + ~ ( x ( ~ ) ) J } )  (A36) 

822/39/1-2-9 
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The first term goes to zero as n ~ +co,  by (A12). The integral term may be 
written as 

IN= fNdz~(y(z))exp[-- l (N--z)] ~(y(z)) 

where 

l (f(x(r 1 
r162 = -f(x(~)) 

+ log {1-f(x(~))[l+~(x(~.))]}) 

setting ~(y(z)) = ~(z), and N-z  = t we obtain 

- - - t  ~ ( N - t )  exp - d~ [6 (~ )+~b( r  
7Cl t 

and 

,INl<~f~'dtexp(--lt) l~(N--t),exp{--f~N d~ [~(~)  + ~b(~)]} 

;o o ( ' )  {;; } <<. dtexp - - - t  I ~ ( N - t ) l  exp - de [ ~ ( ~ ) + r  (A38) 
'K1 --t 

Since $(x),  r  --, 0 as x -* +co,  and $(x)  >~ 1 - 1/7r, it is easily seen that 
the dominated convergence theorem is applicable in (A38). Since the 
integrand in (A38) goes to zero as N ~  +co,  we obtain 

lira IN = 0 
N ~  +v9 

By (A36), this implies that ~(n)--+0 as n ~  +co. Hence F(n)~zq as 
n--+ +oe.  This together with (A9) given that G(n)--* 7z 2 as n--* +co.  This 
completes the proof  of (A34). 
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